×

Virtual crystals and fermionic formulas of type \(D_{n+1}^{(2)}\), \(A_{2n}^{(2)}\), and \(C_n^{(1)}\). (English) Zbl 1026.81024

Fermionic formulae (\(q\)-polynomials or infinite \(q\)-series being sums of products of \(q\)-binomial coefficients) originate in the Bethe ansatz study of exactly solvable lattice models [V. G. Drinfel’d, Dokl. Akad. Nauk SSSR 283, 1060–1064 (1985; Zbl 0588.17015)]. This work belongs to a series of articles by the authors in which fermionic formulae and crystal bases associated with quantum affine algebras are studied [M. Okado, A. Schilling and M. Shimozone, Contemp. Math. 291, 29–53 (2001; Zbl 1020.17011); A. N. Kirillov, A. Schilling and M. Shimozono, Sel. Math., New Ser. 8, 67–135 (2002; Zbl 0986.05013)]. Specifically this paper is devoted to the virtual crystals and fermionic formulae for the types \(D_{n+1}^{(2)}\), \(A_{2n}^{(2)}\) and \(C_{n}^{(1)}\). After reviewing the general crystal theory (R-matrices, crystal graphs and duals, configuration sums, etc), the combinatorial structure of \(A_{n}^{(1)}\)-type crystals is analyzed. The Littlewood-Richardson (LR) tableaux are used to parametrize the (irreducible) components of tensor products of these crystals. For the types \(D_{n+1}^{(2)}\), \(A_{2n}^{(2)}\), \(C_{n}^{(1)}\) and \(A_{2n}^{(2)†}\) virtual crystals \(V^{r,s}\) are introduced and characterized for the value \(s=1\). Fermionic formulae for these types are proved using the characterization of rigged configurations in the image of virtual crystals under the bijection with the LR-tableaux. The type \(A_{2n}^{(2)†}\) is analyzed separately, and new fermionic formulae are obtained. The paper solves some conjectures proposed earlier in the literature, and constitutes an interesting advance in the theory of virtual crystals.

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations
05A30 \(q\)-calculus and related topics
05E10 Combinatorial aspects of representation theory
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
82B23 Exactly solvable models; Bethe ansatz

References:

[1] Tatsuya Akasaka and Masaki Kashiwara, Finite-dimensional representations of quantum affine algebras, Publ. Res. Inst. Math. Sci. 33 (1997), no. 5, 839 – 867. · Zbl 0915.17011 · doi:10.2977/prims/1195145020
[2] Timothy H. Baker, Zero actions and energy functions for perfect crystals, Publ. Res. Inst. Math. Sci. 36 (2000), no. 4, 533 – 572. · Zbl 0971.05111 · doi:10.2977/prims/1195142873
[3] Lynne M. Butler, Subgroup lattices and symmetric functions, Mem. Amer. Math. Soc. 112 (1994), no. 539, vi+160. · Zbl 0813.05067 · doi:10.1090/memo/0539
[4] Vyjayanthi Chari, On the fermionic formula and the Kirillov-Reshetikhin conjecture, Internat. Math. Res. Notices 12 (2001), 629 – 654. · Zbl 0982.17004 · doi:10.1155/S1073792801000332
[5] V. G. Drinfeld, Hopf algebra and the Yang-Baxter equation, Soviet. Math. Dokl. 32 (1985) 254-258.
[6] Goro Hatayama, Anatol N. Kirillov, Atsuo Kuniba, Masato Okado, Taichiro Takagi, and Yasuhiko Yamada, Character formulae of \Hat \?\?_{\?}-modules and inhomogeneous paths, Nuclear Phys. B 536 (1999), no. 3, 575 – 616. · Zbl 0952.17013 · doi:10.1016/S0550-3213(98)00647-6
[7] G. Hatayama, A. Kuniba, M. Okado, T. Takagi, and Z. Tsuboi, Paths, crystals and fermionic formulae, MathPhys odyssey, 2001, 205-272, Prog. Math. Phys., 23, Birkhäuser Boston, Boston, MA, 2002. · Zbl 1016.17011
[8] G. Hatayama, A. Kuniba, M. Okado, T. Takagi, and Y. Yamada, Remarks on fermionic formula, Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998) Contemp. Math., vol. 248, Amer. Math. Soc., Providence, RI, 1999, pp. 243 – 291. · Zbl 1032.81015 · doi:10.1090/conm/248/03826
[9] Michio Jimbo, A \?-difference analogue of \?(\?) and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), no. 1, 63 – 69. · Zbl 0587.17004 · doi:10.1007/BF00704588
[10] Naihuan Jing, Kailash C. Misra, and Masato Okado, \?-wedge modules for quantized enveloping algebras of classical type, J. Algebra 230 (2000), no. 2, 518 – 539. · Zbl 1024.17012 · doi:10.1006/jabr.2000.8325
[11] Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. · Zbl 0716.17022
[12] Seok-Jin Kang, Masaki Kashiwara, and Kailash C. Misra, Crystal bases of Verma modules for quantum affine Lie algebras, Compositio Math. 92 (1994), no. 3, 299 – 325. · Zbl 0808.17007
[13] Seok-Jin Kang, Masaki Kashiwara, Kailash C. Misra, Tetsuji Miwa, Toshiki Nakashima, and Atsushi Nakayashiki, Affine crystals and vertex models, Infinite analysis, Part A, B (Kyoto, 1991) Adv. Ser. Math. Phys., vol. 16, World Sci. Publ., River Edge, NJ, 1992, pp. 449 – 484. · Zbl 0925.17005
[14] Seok-Jin Kang, Masaki Kashiwara, Kailash C. Misra, Tetsuji Miwa, Toshiki Nakashima, and Atsushi Nakayashiki, Perfect crystals of quantum affine Lie algebras, Duke Math. J. 68 (1992), no. 3, 499 – 607. · Zbl 0774.17017 · doi:10.1215/S0012-7094-92-06821-9
[15] Masaki Kashiwara, Crystalizing the \?-analogue of universal enveloping algebras, Comm. Math. Phys. 133 (1990), no. 2, 249 – 260. · Zbl 0724.17009
[16] M. Kashiwara, On crystal bases of the \?-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), no. 2, 465 – 516. · Zbl 0739.17005 · doi:10.1215/S0012-7094-91-06321-0
[17] Masaki Kashiwara, On crystal bases, Representations of groups (Banff, AB, 1994) CMS Conf. Proc., vol. 16, Amer. Math. Soc., Providence, RI, 1995, pp. 155 – 197. · Zbl 0851.17014
[18] Masaki Kashiwara, Similarity of crystal bases, Lie algebras and their representations (Seoul, 1995) Contemp. Math., vol. 194, Amer. Math. Soc., Providence, RI, 1996, pp. 177 – 186. · Zbl 0874.17028 · doi:10.1090/conm/194/02393
[19] Masaki Kashiwara, On level-zero representations of quantized affine algebras, Duke Math. J. 112 (2002), no. 1, 117 – 175. · Zbl 1033.17017 · doi:10.1215/S0012-9074-02-11214-9
[20] Masaki Kashiwara and Toshiki Nakashima, Crystal graphs for representations of the \?-analogue of classical Lie algebras, J. Algebra 165 (1994), no. 2, 295 – 345. · Zbl 0808.17005 · doi:10.1006/jabr.1994.1114
[21] David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165 – 184. · Zbl 0499.20035 · doi:10.1007/BF01390031
[22] Rinat Kedem and Barry M. McCoy, Construction of modular branching functions from Bethe’s equations in the 3-state Potts chain, J. Statist. Phys. 71 (1993), no. 5-6, 865 – 901. · Zbl 0945.82507 · doi:10.1007/BF01049953
[23] S. V. Kerov, A. N. Kirillov, and N. Yu. Reshetikhin, Combinatorics, the Bethe ansatz and representations of the symmetric group, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 155 (1986), no. Differentsial\(^{\prime}\)naya Geometriya, Gruppy Li i Mekh. VIII, 50 – 64, 193 (Russian, with English summary); English transl., J. Soviet Math. 41 (1988), no. 2, 916 – 924. · Zbl 0639.20028 · doi:10.1007/BF01247087
[24] A. N. Kirillov and N. Yu. Reshetikhin, The Bethe ansatz and the combinatorics of Young tableaux, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 155 (1986), no. Differentsial\(^{\prime}\)naya Geometriya, Gruppy Li i Mekh. VIII, 65 – 115, 194 (Russian, with English summary); English transl., J. Soviet Math. 41 (1988), no. 2, 925 – 955. · Zbl 0639.20029 · doi:10.1007/BF01247088
[25] A. N. Kirillov and N. Yu. Reshetikhin, Representations of Yangians and multiplicities of the inclusion of the irreducible components of the tensor product of representations of simple Lie algebras, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 160 (1987), no. Anal. Teor. Chisel i Teor. Funktsiĭ. 8, 211 – 221, 301 (Russian); English transl., J. Soviet Math. 52 (1990), no. 3, 3156 – 3164. · Zbl 0900.16047 · doi:10.1007/BF02342935
[26] Anatol N. Kirillov, Anne Schilling, and Mark Shimozono, A bijection between Littlewood-Richardson tableaux and rigged configurations, Selecta Math. (N.S.) 8 (2002), no. 1, 67 – 135. · Zbl 0986.05013 · doi:10.1007/s00029-002-8102-6
[27] Donald E. Knuth, Permutations, matrices, and generalized Young tableaux, Pacific J. Math. 34 (1970), 709 – 727. · Zbl 0199.31901
[28] Yoshiyuki Koga, Level one perfect crystals for \?\?\textonesuperior \?_{\?},\?\?\textonesuperior \?_{\?}, and \?\?\textonesuperior \?_{\?}, J. Algebra 217 (1999), no. 1, 312 – 334. · Zbl 0941.17010 · doi:10.1006/jabr.1998.7806
[29] Y. Koga, Notes on \(C^{(1)}_n\)-crystals, preprint, 1998.
[30] Atsuo Kuniba, Kailash C. Misra, Masato Okado, and Jun Uchiyama, Demazure modules and perfect crystals, Comm. Math. Phys. 192 (1998), no. 3, 555 – 567. · Zbl 0908.17009 · doi:10.1007/s002200050309
[31] Alain Lascoux and Marcel-Paul Schützenberger, Sur une conjecture de H. O. Foulkes, C. R. Acad. Sci. Paris Sér. A-B 286 (1978), no. 7, A323 – A324 (French, with English summary). · Zbl 0374.20010
[32] Alain Lascoux and Marcel-P. Schützenberger, Le monoïde plaxique, Noncommutative structures in algebra and geometric combinatorics (Naples, 1978) Quad. ”Ricerca Sci.”, vol. 109, CNR, Rome, 1981, pp. 129 – 156 (French, with Italian summary).
[33] Alain Lascoux, Bernard Leclerc, and Jean-Yves Thibon, Crystal graphs and \?-analogues of weight multiplicities for the root system \?_{\?}, Lett. Math. Phys. 35 (1995), no. 4, 359 – 374. · Zbl 0854.17014 · doi:10.1007/BF00750843
[34] G. Lusztig, Green polynomials and singularities of unipotent classes, Adv. in Math. 42 (1981), no. 2, 169 – 178. · Zbl 0473.20029 · doi:10.1016/0001-8708(81)90038-4
[35] G. Lusztig, Fermionic form and Betti numbers, preprint math.QA/0005010.
[36] I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. · Zbl 0899.05068
[37] Hiraku Nakajima, \?-analogue of the \?-characters of finite dimensional representations of quantum affine algebras, Physics and combinatorics, 2000 (Nagoya), World Sci. Publ., River Edge, NJ, 2001, pp. 196 – 219. · Zbl 1011.17013 · doi:10.1142/9789812810007_0009
[38] Atsushi Nakayashiki and Yasuhiko Yamada, Kostka polynomials and energy functions in solvable lattice models, Selecta Math. (N.S.) 3 (1997), no. 4, 547 – 599. · Zbl 0915.17016 · doi:10.1007/s000290050020
[39] Masato Okado, Anne Schilling, and Mark Shimozono, Crystal bases and \?-identities, \?-series with applications to combinatorics, number theory, and physics (Urbana, IL, 2000) Contemp. Math., vol. 291, Amer. Math. Soc., Providence, RI, 2001, pp. 29 – 53. · Zbl 1020.17011 · doi:10.1090/conm/291/04891
[40] C. Schensted, Longest increasing and decreasing subsequences, Canad. J. Math. 13 (1961), 179 – 191. · Zbl 0097.25202 · doi:10.4153/CJM-1961-015-3
[41] A. Schilling and S. O. Warnaar, Inhomogeneous lattice paths, generalized Kostka polynomials and \(A_ {n-1}\) supernomials, Commun. Math. Phys. 202 (1999) 359-401. · Zbl 0935.05090
[42] Mark Shimozono, A cyclage poset structure for Littlewood-Richardson tableaux, European J. Combin. 22 (2001), no. 3, 365 – 393. · Zbl 0979.05107 · doi:10.1006/eujc.2000.0464
[43] Mark Shimozono, Multi-atoms and monotonicity of generalized Kostka polynomials, European J. Combin. 22 (2001), no. 3, 395 – 414. · Zbl 0979.05108 · doi:10.1006/eujc.2000.0465
[44] Mark Shimozono, Affine type A crystal structure on tensor products of rectangles, Demazure characters, and nilpotent varieties, J. Algebraic Combin. 15 (2002), no. 2, 151 – 187. · Zbl 1106.17305 · doi:10.1023/A:1013894920862
[45] J. Stembridge, Multiplicity-free products of Schur functions, Ann. Comb. 5 (2001), no. 2, 113-121. · Zbl 0990.05130
[46] T. G. Ostrom, Finite translation planes and group representation, The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979) Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc., Providence, R.I., 1980, pp. 469 – 471.
[47] Shigenori Yamane, Perfect crystals of \?_{\?}(\?\?\textonesuperior \?\(_{2}\)), J. Algebra 210 (1998), no. 2, 440 – 486. · Zbl 0929.17013 · doi:10.1006/jabr.1998.7597
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.