×

The perturbative Regge-calculus regime of loop quantum gravity. (English) Zbl 1219.83077

Summary: The relation between loop quantum gravity and Regge calculus has been pointed out many times in the literature. In particular the large spin asymptotics of the Barrett-Crane vertex amplitude is known to be related to the Regge action. In this paper we study a semiclassical regime of loop quantum gravity and show that it admits an effective description in terms of perturbative area-Regge-calculus. The regime of interest is identified by a class of states given by superpositions of four-valent spin networks, peaked on large spins. As a probe of the dynamics in this regime, we compute explicitly two- and three-area correlation functions at the vertex amplitude level. We find that they match with the ones computed perturbatively in area-Regge-calculus with a single 4-simplex, once a specific perturbative action and measure have been chosen in the Regge-calculus path integral. Correlations of other geometric operators and the existence of this regime for other models for the dynamics are briefly discussed.

MSC:

83C45 Quantization of the gravitational field
81V17 Gravitational interaction in quantum theory
83C27 Lattice gravity, Regge calculus and other discrete methods in general relativity and gravitational theory

References:

[1] Rovelli, C., Quantum Gravity (2004), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, UK · Zbl 0962.83507
[2] Ashtekar, A.; Lewandowski, J., Background independent quantum gravity: A status report, Class. Quantum Grav., 21, R53 (2004) · Zbl 1077.83017
[3] Thiemann, T., Modern Canonical Quantum General Relativity (2007), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, UK · Zbl 1129.83004
[4] Regge, T., General relativity without coordinates, Nuovo Cimento, 19, 558-571 (1961)
[5] Wigner, E., Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra (1959), Academic Press: Academic Press New York · Zbl 0085.37905
[6] Landau, L. D.; Lifshits, E. M., Quantum Mechanics Non-Relativistic Theory, vol. 3 (1958), Pergamon: Pergamon UK · Zbl 0714.70004
[7] Ponzano, G.; Regge, T., Semiclassical limit of Racah coefficients, (Block, F., Spectroscopic and Group Theoretical Methods in Physics (1968), North-Holland: North-Holland Amsterdam)
[8] De Pietri, R.; Rovelli, C., Geometry eigenvalues and scalar product from recoupling theory in loop quantum gravity, Phys. Rev. D, 54, 2664-2690 (1996)
[9] Misner, C. W.; Thorne, K. S.; Wheeler, J. A., Gravitation (1973), Freeman
[10] Immirzi, G., Quantum gravity and Regge calculus, Nucl. Phys. B (Proc. Suppl.), 57, 65-72 (1997) · Zbl 0976.83504
[11] Barbieri, A., Quantum tetrahedra and simplicial spin networks, Nucl. Phys. B, 518, 714-728 (1998)
[12] Baez, J. C.; Barrett, J. W., The quantum tetrahedron in 3 and 4 dimensions, Adv. Theor. Math. Phys., 3, 815-850 (1999) · Zbl 0984.83023
[13] Rovelli, C.; Speziale, S., A semiclassical tetrahedron, Class. Quantum Grav., 23, 5861-5870 (2006) · Zbl 1107.83026
[14] Reisenberger, M. P., World sheet formulations of gauge theories and gravity, Talk given at 7th Marcel Grossmann Meeting on General Relativity (MG7), Stanford, CA, 24-30 July 1994
[15] Baez, J. C., Spin foam models, Class. Quantum Grav., 15, 1827-1858 (1998) · Zbl 0932.83014
[16] Perez, A., Spin foam models for quantum gravity, Class. Quantum Grav., 20, R43 (2003) · Zbl 1030.83002
[17] Barrett, J. W.; Crane, L., Relativistic spin networks and quantum gravity, J. Math. Phys., 39, 3296-3302 (1998) · Zbl 0967.83006
[18] Engle, J.; Pereira, R.; Rovelli, C., The loop-quantum-gravity vertex-amplitude · Zbl 1228.83045
[19] Engle, J.; Pereira, R.; Rovelli, C., Flipped spinfoam vertex and loop gravity · Zbl 1234.83009
[20] Barrett, J. W.; Williams, R. M., The asymptotics of an amplitude for the 4-simplex, Adv. Theor. Math. Phys., 3, 209-215 (1999) · Zbl 0962.83011
[21] Barrett, J. W., The classical evaluation of relativistic spin networks, Adv. Theor. Math. Phys., 2, 593-600 (1998) · Zbl 0947.83016
[22] Baez, J. C.; Christensen, J. D.; Egan, G., Asymptotics of \(10j\) symbols, Class. Quantum Grav., 19, 6489 (2002) · Zbl 1041.83007
[23] Barrett, J. W.; Steele, C. M., Asymptotics of relativistic spin networks, Class. Quantum Grav., 20, 1341-1362 (2003) · Zbl 1043.83011
[24] Freidel, L.; Louapre, D., Asymptotics of \(6j\) and \(10j\) symbols, Class. Quantum Grav., 20, 1267-1294 (2003) · Zbl 1035.83014
[25] Rovelli, C., Graviton propagator from background-independent quantum gravity, Phys. Rev. Lett., 97, 151301 (2006) · Zbl 1228.83050
[26] Bianchi, E.; Modesto, L.; Rovelli, C.; Speziale, S., Graviton propagator in loop quantum gravity, Class. Quantum Grav., 23, 6989-7028 (2006) · Zbl 1117.83042
[27] Barrett, J. W.; Rocek, M.; Williams, R. M., A note on area variables in Regge calculus, Class. Quantum Grav., 16, 1373-1376 (1999) · Zbl 0934.83019
[28] Makela, J., Variation of area variables in Regge calculus, Class. Quantum Grav., 17, 4991-4998 (2000) · Zbl 0972.83028
[29] Makela, J.; Williams, R. M., Constraints on area variables in Regge calculus, Class. Quantum Grav., 18, L43 (2001) · Zbl 0973.83017
[30] Rovelli, C., The Basis of the Ponzano-Regge-Turaev-Viro-Ooguri quantum gravity model is the loop representation basis, Phys. Rev. D, 48, 2702-2707 (1993)
[31] Regge, T.; Williams, R. M., Discrete structures in gravity, J. Math. Phys., 41, 3964-3984 (2000) · Zbl 0984.83016
[32] Livine, E. R.; Speziale, S., Group integral techniques for the spinfoam graviton propagator, JHEP, 0611, 092 (2006)
[33] Speziale, S., Towards the graviton from spinfoams: The 3d toy model, JHEP, 0605, 039 (2006)
[34] Livine, E. R.; Speziale, S.; Willis, J. L., Towards the graviton from spinfoams: Higher order corrections in the 3d toy model, Phys. Rev. D, 75, 024038 (2007)
[35] E. Bianchi, L. Modesto, C. Rovelli, Towards perturbative quantum gravity from spinfoams: The 3-graviton correlation function, in preparation; E. Bianchi, L. Modesto, C. Rovelli, Towards perturbative quantum gravity from spinfoams: The 3-graviton correlation function, in preparation
[36] Rocek, M.; Williams, R. M., Quantum Regge calculus, Phys. Lett. B, 104, 31 (1981)
[37] Rocek, M.; Williams, R. M., The quantization of Regge calculus, Z. Phys. C, 21, 371 (1984)
[38] Livine, E. R.; Speziale, S., A new spinfoam vertex for quantum gravity
[39] Livine, E. R.; Speziale, S., Consistently solving the simplicity constraints for spinfoam quantum gravity
[40] Freidel, L.; Krasnov, K., A new spin foam model for 4d gravity · Zbl 1144.83007
[41] Alexandrov, S., Spin foam model from canonical quantization
[42] Oeckl, R., Schroedinger’s cat and the clock: Lessons for quantum gravity, Class. Quantum Grav., 20, 5371-5380 (2003) · Zbl 1170.83383
[43] Oeckl, R., A ‘general boundary’ formulation for quantum mechanics and quantum gravity, Phys. Lett. B, 575, 318-324 (2003) · Zbl 1094.81551
[44] Oeckl, R., General boundary quantum field theory: Foundations and probability interpretation · Zbl 1210.81039
[45] Oeckl, R., General boundary quantum field theory: Timelike hypersurfaces in Klein-Gordon theory, Phys. Rev. D, 73, 065017 (2006)
[46] Hayward, G.; Wong, K., Boundary Schrödinger equation in quantum geometrodynamics, Phys. Rev. D, 46, 620-626 (1992)
[47] G.B. Segal, The definition of conformal field theory, in: Como 1987, Proceedings, Differential Geometrical Methods in Theoretical Physics, pp. 165-171; G.B. Segal, The definition of conformal field theory, in: Como 1987, Proceedings, Differential Geometrical Methods in Theoretical Physics, pp. 165-171 · Zbl 0657.53060
[48] Atiyah, M., Topological quantum field theories, Inst. Hautes Etudes Sci. Publ. Math., 68, 175-186 (1989) · Zbl 0692.53053
[49] Segal, G., Quantum Field Theory, Lectures given at ITP Workshop on Geometry and Physics (1999)
[50] Conrady, F.; Doplicher, L.; Oeckl, R.; Rovelli, C.; Testa, M., Minkowski vacuum in background independent quantum gravity, Phys. Rev. D, 69, 064019 (2004)
[51] Hartle, J. B.; Hawking, S. W., Wave function of the universe, Phys. Rev. D, 28, 2960-2975 (1983) · Zbl 1370.83118
[52] Modesto, L.; Rovelli, C., Particle scattering in loop quantum gravity, Phys. Rev. Lett., 95, 191301 (2005)
[53] Baez, J. C.; Christensen, J. D.; Halford, T. R.; Tsang, D. C., Spin foam models of Riemannian quantum gravity, Class. Quantum Grav., 19, 4627-4648 (2002) · Zbl 1021.83015
[54] Reisenberger, M. P.; Rovelli, C., Sum-over-surfaces form of loop quantum gravity, Phys. Rev. D, 56, 3490-3508 (1997)
[55] Rovelli, C.; Smolin, L., Nucl. Phys. B, 456, 753 (1995), Erratum · Zbl 0925.83013
[56] Ashtekar, A.; Lewandowski, J., Quantum theory of geometry. I: Area operators, Class. Quantum Grav., 14, A55-A82 (1997) · Zbl 0866.58077
[57] Ashtekar, A.; Lewandowski, J., Quantum theory of geometry. II: Volume operators, Adv. Theor. Math. Phys., 1, 388 (1998) · Zbl 0903.58067
[58] Ashtekar, A.; Corichi, A.; Zapata, J. A., Quantum theory of geometry. III: Non-commutativity of Riemannian structures, Class. Quantum Grav., 15, 2955-2972 (1998) · Zbl 1026.83027
[59] Smolin, L., The classical limit and the form of the Hamiltonian constraint in non-perturbative quantum general relativity
[60] Perez, A., Introduction to loop quantum gravity and spin foams, Proceedings of the II International Conference on Fundamental Interactions, Pedra Azul, Brazil, June 2004
[61] Nicolai, H.; Peeters, K.; Zamaklar, M., Loop quantum gravity: An outside view, Class. Quantum Grav., 22, R193 (2005) · Zbl 1075.83020
[62] Nicolai, H.; Peeters, K., Loop and spin foam quantum gravity: A brief guide for beginners · Zbl 1145.83001
[63] Thiemann, T., Loop quantum gravity: An inside view · Zbl 1151.83019
[64] J. Baez, Quantum Gravity Seminar—Fall 2000, available at math.ucr.edu/home/baez/qg-fall2000; J. Baez, Quantum Gravity Seminar—Fall 2000, available at math.ucr.edu/home/baez/qg-fall2000
[65] Cvitanović, P., Group theory: Birdtracks, Lies, and Exceptional Groups (2007), Princeton Univ. Press: Princeton Univ. Press Princeton
[66] De Pietri, R.; Freidel, L., \(SO(4)\) Plebanski action and relativistic spin foam model, Class. Quantum Grav., 16, 2187-2196 (1999) · Zbl 0942.83050
[67] Perez, A., Spin foam quantization of \(SO(4)\) Plebanski’s action, Adv. Theor. Math. Phys., 5, 947-968 (2002) · Zbl 1012.83006
[68] Ooguri, H., Partition functions and topology changing amplitudes in the 3-D lattice gravity of Ponzano and Regge, Nucl. Phys. B, 382, 276-304 (1992) · Zbl 0968.82519
[69] Erdelyi, A., Asymptotic Expansions (1954), Dover: Dover New York
[70] Zelditch, S., Inverse spectral problem for analytic plane domains II: \(Z_2\)-symmetric domains · Zbl 1196.58016
[71] Montvay, I.; Munster, G., Quantum Fields on a Lattice (1994), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, UK
[72] Loll, R., Discrete approaches to quantum gravity in four dimensions, Living Rev. Rel., 1, 13 (1998) · Zbl 1023.83011
[73] Hamber, H. W., Discrete and continuum quantum gravity · Zbl 1090.81523
[74] R.M. Williams, Introduction to Regge calculus, Lecture notes at the First Quantum Geometry and Quantum Gravity School, Zakopane, Poland 23 March-3 April, 2007, in preparation; R.M. Williams, Introduction to Regge calculus, Lecture notes at the First Quantum Geometry and Quantum Gravity School, Zakopane, Poland 23 March-3 April, 2007, in preparation
[75] Friedberg, R.; Lee, T. D., Derivation of Regge’s action from Einstein’s theory of general relativity, Nucl. Phys. B, 242, 145 (1984)
[76] Feinberg, G.; Friedberg, R.; Lee, T. D.; Ren, H. C., Lattice gravity near the continuum limit, Nucl. Phys. B, 245, 343 (1984)
[77] Cheeger, J.; Muller, W.; Schrader, R., On the curvature of piecewise flat spaces, Commun. Math. Phys., 92, 405 (1984) · Zbl 0559.53028
[78] Gibbons, G. W.; Hawking, S. W., Action integrals and partition functions in quantum gravity, Phys. Rev. D, 15, 2752-2756 (1977)
[79] Hawking, S. W.; Hunter, C. J., The gravitational Hamiltonian in the presence of non-orthogonal boundaries, Class. Quantum Grav., 13, 2735-2752 (1996) · Zbl 0859.58038
[80] Hartle, J. B.; Sorkin, R., Boundary terms in the action for the Regge calculus, Gen. Relativ. Gravit., 13, 541-549 (1981)
[81] Misner, C. W., Feynman quantization of general relativity, Rev. Mod. Phys., 29, 497-509 (1957) · Zbl 0080.22004
[82] Jevicki, A.; Ninomiya, M., Functional formulation of Regge gravity, Phys. Rev. D, 33, 1634 (1986)
[83] Menotti, P.; Peirano, P. P., Diffeomorphism invariant measure for finite-dimensional geometries, Nucl. Phys. B, 488, 719-734 (1997) · Zbl 0925.58007
[84] Menotti, P.; Peirano, P. P., Functional integration on Regge geometries, Nucl. Phys. B (Proc. Suppl.), 53, 780-782 (1997) · Zbl 0976.83502
[85] Menotti, P.; Peirano, P. P., Functional integration for Regge gravity, Nucl. Phys. B (Proc. Suppl.), 57, 82-90 (1997) · Zbl 0976.83502
[86] Menotti, P., The role of diffeomorphisms in the integration over a finite-dimensional space of geometries, Nucl. Phys. B (Proc. Suppl.), 63, 760-762 (1998)
[87] Jevicki, A.; Ninomiya, M., Lattice gravity and strings, Phys. Lett. B, 150, 115 (1985)
[88] Menotti, P.; Peirano, P. P., Faddeev-Popov determinant in two-dimensional Regge gravity, Phys. Lett. B, 353, 444-449 (1995)
[89] Menotti, P.; Peirano, P. P., 2-dimensional Regge gravity in the conformal gauge, Nucl. Phys. B (Proc. Suppl.), 47, 633-636 (1996)
[90] Menotti, P.; Peirano, P. P., Conformal gauge fixing and Faddeev-Popov determinant in 2-dimensional Regge gravity · Zbl 0976.83502
[91] Menotti, P.; Peirano, P. P., Functional integration on two-dimensional Regge geometries, Nucl. Phys. B, 473, 426-454 (1996) · Zbl 0925.83008
[92] Hamber, H. W.; Williams, R. M., On the measure in simplicial gravity, Phys. Rev. D, 59, 064014 (1999)
[93] Wheeler, J. A., Geometrodynamics and the issue of the final state, (DeWitt, B.; DeWitt, C., Relativity, Groups and Topology (1964), Gordon and Breach: Gordon and Breach New York), 463-500 · Zbl 0148.46204
[94] Dittrich, B.; Freidel, L.; Speziale, S., Linearized dynamics from the 4-simplex Regge action
[95] Thiemann, T., Quantum spin dynamics (QSD), Class. Quantum Grav., 15, 839-873 (1998) · Zbl 0956.83013
[96] Thiemann, T., Quantum spin dynamics (QSD): II. The kernel of the Wheeler-DeWitt constraint operator, Class. Quantum Grav., 15, 875-905 (1998) · Zbl 0956.83013
[97] Borissov, R.; De Pietri, R.; Rovelli, C., Matrix elements of Thiemann’s Hamiltonian constraint in loop quantum gravity, Class. Quantum Grav., 14, 2793-2823 (1997) · Zbl 0891.58041
[98] Thiemann, T., Quantum spin dynamics. VIII: The master constraint, Class. Quantum Grav., 23, 2249-2266 (2006) · Zbl 1090.83014
[99] Hamber, H. W.; Williams, R. M., Higher derivative quantum gravity on a simplicial lattice, Nucl. Phys. B, 248, 392 (1984)
[100] Hamber, H. W.; Williams, R. M., Simplicial quantum gravity with higher derivative terms: Formalism and numerical results in four-dimensions, Nucl. Phys. B, 269, 712 (1986)
[101] Major, S. A., Operators for quantized directions, Class. Quantum Grav., 16, 3859-3877 (1999) · Zbl 0937.83022
[102] Alesci, E.; Rovelli, C., The complete LQG propagator: I. Difficulties with the Barrett-Crane vertex
[103] Donoghue, J. F., General relativity as an effective field theory: The leading quantum corrections, Phys. Rev. D, 50, 3874-3888 (1994)
[104] Burgess, C. P., Quantum gravity in everyday life: General relativity as an effective field theory, Living Rev. Rel., 7, 5 (2004) · Zbl 1070.83009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.