×

Asymptotic freedom and Euclidean quantum gravity. (English) Zbl 1043.83528

Summary: Pure SU(2) gauge theory is the simplest asymptotically free theory in four dimensions. To investigate the possibility that the entropy dominated region in euclidean quantum gravity is of physical relevance, we simulate \(4d\) SU(2) lattice gauge theory on a dynamically coupled Regge skeleton. The fluctuations of the skeleton are governed by the standard Regge-Einstein action. From a small 2x4\(^3\) lattice we report exploratory numerical results, limited to a region of strong gravity where the Planck mass and hadronic masses take similar orders of magnitude. We find a range of the Planck mass where stable bulk expectation values are obtained which vary smoothly with the gauge coupling, and a remnant of the QCD deconfining phase transition is located. For a consistent picture of quantum gravity coupled with an asymptotically free field theory a necessary, but not sufficient, condition is to observe a scaling law in future simulations.

MSC:

83C45 Quantization of the gravitational field
83C27 Lattice gravity, Regge calculus and other discrete methods in general relativity and gravitational theory

References:

[1] Hawking, S. W., (Hawking, S. W.; Israel, W., General relativity - an Einstein centenary survey (1979), Cambridge U.P: Cambridge U.P Cambridge), 746 · Zbl 0424.53001
[2] Hooft, G.’t; Veltman, M., Ann. Inst. H. Poincaré, 20, 69 (1972)
[3] Menotti, P., Nucl. Phys. B (Proc. Suppl.), 17, 29 (1990)
[4] Regge, T., Nuovo Cimento, 19, 558 (1961)
[5] Rocek, M.; Williams, R. M., Z. Phys., C21, 371 (1984)
[6] Berg, B. A., Phys. Lett., B176, 39 (1986)
[7] Beirl, W.; Gerstenmayer, E.; Markum, H., Phys. Rev. Lett., 69, 713 (1992)
[8] Weinberg, S., (Hawking, S. W.; Israel, W., General relativity - an Einstein centenary survey (1979), Cambridge U.P: Cambridge U.P Cambridge), 790 · Zbl 0424.53001
[9] Berg, B. A., Particle physics and astrophysics, (Mitter, H.; Widder, F., Proc. XXVII Int. Universitätswochen für Kernphysik (1989), Springer: Springer Berlin), 223
[10] Feinberg, G.; Friedberg, R.; Lee, T. D.; Ren, H. C., Nucl. Phys., B245, 343 (1984)
[12] Jones, D. R.T., Nucl. Phys., B75, 431 (1974)
[13] Christ, N. H.; Lee, T. D., Nucl. Phys., B202, 89 (1982)
[14] Christ, N. H.; Lee, T. D., Nucl. Phys., B210, 310 (1982)
[15] Christ, N. H.; Lee, T. D., Nucl. Phys., B210, 337 (1982)
[16] Hamber, H. W.; Williams, R. M., Nucl. Phys., B248, 392 (1984)
[17] Manton, N. S., Phys. Lett., B96, 328 (1980)
[18] Hasenfratz, A.; Hasenfratz, P., Nucl. Phys., B193, 210 (1981), and references therein
[19] Geroch, R.; Hartle, J., Found. Phys., 16, 533 (1986)
[21] Celmaster, W.; Moriarty, K. J.M., Phys. Rev., D33, 3718 (1986)
[22] Krishnan, B., (Ph. D. thesis (1993), Florida State University)
[23] Creutz, M.; Jacobs, L.; Rebbi, C., Phys. Rev., D20, 1915 (1979)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.