×

Symplectic reduction and topology for applications in classical molecular dynamics. (English) Zbl 0770.70008

Some basic principles of Hamiltonian mechanics are considered in order to provide a framework for the geometric treatment of the dynamics of \(N\)- body systems, such as molecules, clusters and complexes. The authors focus on (i) the separation of the rotational and internal energies in an arbitrary floppy \(N\)-body system and (ii) the reduction of the phase space accompanying the change from the laboratory coordinate system to the center of mass coordinate system.
The simplest case of two-body systems is considered in detail; symplectic reduction is employed to demonstrate the separation of transitional, rotational and internal energies. By examining the topology of the energy-momentum map, a unified treatment is presented of the reduction results for (i) classical dynamics of rotating and vibrating diatomic molecules and (ii) classical dynamics of atom-atom collisions.
The outlines of the relevance of the presented approach for the description of the dynamics of larger \(N\)-body systems are presented.

MSC:

70F10 \(n\)-body problems
70F05 Two-body problems
37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems

References:

[1] DOI: 10.1016/0003-4916(59)90026-0 · Zbl 0086.22501 · doi:10.1016/0003-4916(59)90026-0
[2] DOI: 10.1016/0003-4916(59)90027-2 · Zbl 0086.22502 · doi:10.1016/0003-4916(59)90027-2
[3] Herschbach D. R., The Vortex 22 pp 348– (1961)
[4] DOI: 10.1039/df9623300149 · doi:10.1039/df9623300149
[5] DOI: 10.1021/ar50007a004 · doi:10.1021/ar50007a004
[6] DOI: 10.1103/PhysRev.32.812 · JFM 54.0967.04 · doi:10.1103/PhysRev.32.812
[7] DOI: 10.1103/PhysRev.47.552 · Zbl 0011.38003 · doi:10.1103/PhysRev.47.552
[8] DOI: 10.1016/0034-4877(74)90021-4 · Zbl 0327.58005 · doi:10.1016/0034-4877(74)90021-4
[9] DOI: 10.1007/BF01881678 · Zbl 0738.70010 · doi:10.1007/BF01881678
[10] DOI: 10.1103/PhysRevLett.62.241 · doi:10.1103/PhysRevLett.62.241
[11] DOI: 10.1039/dc9776200179 · doi:10.1039/dc9776200179
[12] DOI: 10.1063/1.447476 · doi:10.1063/1.447476
[13] DOI: 10.1016/0010-4655(91)90275-P · Zbl 0850.65346 · doi:10.1016/0010-4655(91)90275-P
[14] Lin F. J., Bull. Am. Phys. Soc. 36 pp 1796– (1991)
[15] Guichardet A., Ann. Inst. Henri Poincaré 40 pp 329– (1984)
[16] Iwai T., Ann. Inst. Henri Poincaré 47 pp 199– (1987)
[17] DOI: 10.1103/PhysRevA.33.2262 · doi:10.1103/PhysRevA.33.2262
[18] DOI: 10.2307/2303099 · doi:10.2307/2303099
[19] DOI: 10.1007/BF01418778 · Zbl 0202.23201 · doi:10.1007/BF01418778
[20] DOI: 10.1007/BF01389805 · Zbl 0203.26102 · doi:10.1007/BF01389805
[21] DOI: 10.1103/PhysRev.45.98 · Zbl 0008.23001 · doi:10.1103/PhysRev.45.98
[22] DOI: 10.1098/rspa.1924.0081 · doi:10.1098/rspa.1924.0081
[23] DOI: 10.1098/rspa.1924.0082 · doi:10.1098/rspa.1924.0082
[24] DOI: 10.1103/PhysRev.34.57 · JFM 55.0539.02 · doi:10.1103/PhysRev.34.57
[25] DOI: 10.1063/1.443807 · doi:10.1063/1.443807
[26] DOI: 10.1512/iumj.1977.26.26077 · Zbl 0358.70016 · doi:10.1512/iumj.1977.26.26077
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.