×

A shadow of the repulsive Rutherford scattering in the laboratory frame. (English) Zbl 1539.70017

MSC:

70F99 Dynamics of a system of particles, including celestial mechanics

References:

[1] Geiger, H., On the scattering of the α-particles by matter, Proc. R. Soc. A, 81, 174-177 (1908) · doi:10.1098/rspa.1908.0067
[2] Geiger, H.; Marsden, E., On a diffuse reflection of the α-particles, Proc. R. Soc. A, 82, 495-500 (1909) · doi:10.1098/rspa.1909.0054
[3] Geiger, H., The scattering of α-particles by matter, Proc. R. Soc. A, 83, 492-504 (1910) · doi:10.1098/rspa.1910.0038
[4] Rutherford, E., LXXIX. The scattering of α and β particles by matter and the structure of the atom, London, Edinburgh Dublin Phil. Mag. J. Sci., 21, 669-688 (1911) · JFM 42.0941.01 · doi:10.1080/14786440508637080
[5] Žugec, P.; Topić, I., A shadow of the repulsive Rutherford scattering in the fixed-target and the center-of-mass frame, Eur. J. Phys., 41 (2020) · doi:10.1088/1361-6404/aba32c
[6] Aono, M.; Souda, R., Quantitative surface atomic structure analysis by low-energy ion scattering spectroscopy (ISS), Japan. J. Appl. Phys., 24, 1249-1262 (1985) · doi:10.1143/jjap.24.1249
[7] Brongersma, H.; Draxler, M.; Deridder, M.; Bauer, P., Surface composition analysis by low-energy ion scattering, Surf. Sci. Rep., 62, 63-109 (2007) · doi:10.1016/j.surfrep.2006.12.002
[8] Shatilov, D. A.; Silagadze, Z. K., A shadow of the repulsive Rutherford scattering and Hamilton vector, Eur. J. Phys., 42 (2021) · Zbl 1518.70011 · doi:10.1088/1361-6404/abd98b
[9] Gu, J.; Chen, C-C, A geometric approach to the envelope of Coulomb orbits starting from a point in space, Eur. J. Phys., 42, 055007 (2021) · Zbl 1527.81106 · doi:10.1088/1361-6404/ac0fbb
[10] Adolph, J. W.; Garcia, A. L.; Harter, W. G.; McLaughlin, G. C.; Shiffman, R. R.; Surkus, V. G., Some geometrical aspects of classical Coulomb scattering, Am. J. Phys., 40, 1852-1857 (1972) · doi:10.1119/1.1987076
[11] Warner, R. E.; Huttar, L. A., The parabolic shadow of a Coulomb scatterer, Am. J. Phys., 59, 755-756 (1991) · doi:10.1119/1.16757
[12] Samengo, I.; Barrachina, R. O., Rainbow and glory scattering in Coulomb trajectories starting from a point in space, Eur. J. Phys., 15, 300-308 (1994) · doi:10.1088/0143-0807/15/6/004
[13] Richard, J-M, Safe domain and elementary geometry, Eur. J. Phys., 25, 835-844 (2004) · Zbl 1162.70320 · doi:10.1088/0143-0807/25/6/016
[14] Griffiths, D. J.; Heald, M. A., Time‐dependent generalizations of the Biot-Savart and Coulomb laws, Am. J. Phys., 59, 111-117 (1991) · doi:10.1119/1.16589
[15] Singal, A. K., A first principles derivation of the electromagnetic fields of a point charge in arbitrary motion, Am. J. Phys., 79, 1036-1041 (2011) · doi:10.1119/1.3620257
[16] Janah, A. R.; Padmanabhan, T.; Singh, T. P., On Feynman’s formula for the electromagnetic field of an arbitrarily moving charge, Am. J. Phys., 56, 1036-1038 (1988) · doi:10.1119/1.15334
[17] Jefimenko, O. D., Direct calculation of the electric and magnetic fields of an electric point charge moving with constant velocity, Am. J. Phys., 62, 79-85 (1994) · doi:10.1119/1.17716
[18] Le Bellac, M.; Lévy-Leblond, J. M., Nuovo Cimento B, 14, 217-234 (1973) · doi:10.1007/bf02895715
[19] de Montigny, M.; Rousseaux, G., On the electrodynamics of moving bodies at low velocities, Eur. J. Phys., 27, 755-768 (2006) · Zbl 1120.78002 · doi:10.1088/0143-0807/27/4/007
[20] Manfredi, G., Non-relativistic limits of Maxwell’s equations, Eur. J. Phys., 34, 859-871 (2013) · Zbl 1292.78005 · doi:10.1088/0143-0807/34/4/859
[21] Nelson, R. A., Generalized Lorentz transformation for an accelerated, rotating frame of reference, J. Math. Phys., 28, 2379-2383 (1987) · Zbl 0635.53054 · doi:10.1063/1.527774
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.