×

Vibration control for a flexible single-link manipulator and its application. (English) Zbl 07907164

Summary: This study focuses on vibration control design of a flexible single-link manipulator (FSLM) system and discusses its application on an experimental platform. A spatiotemporal mathematic model is presented to formulate dynamical behaviour of the FSLM system, and only a boundary controller mounted on the hub is designed to drive the link for tracking a given angular position and to reduce elastic deflection simultaneously. Under the boundary vibration control scheme, states of the system are ensured to converge exponentially to the equilibrium position. Moreover, numerical simulations demonstrate the correctness of theoretical proof for the stability analysis and the reasonability of boundary control design. Experiment validation implemented on the Quanser laboratory platform illustrates the same conclusion as well.
© 2021 The Authors. IET Control Theory & Applications published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology

MSC:

93C85 Automated systems (robots, etc.) in control theory
70L05 Random vibrations in mechanics of particles and systems
Full Text: DOI

References:

[1] KiangC.T.SpowageA., and YoongC.K.: ‘Review of control and sensor system of flexible manipulator’, J. Intell. Robotic Syst., 2015, 77, (1), pp. 187-213
[2] YangC.WuH., and LiZ.et al.: ‘Mind control of a robotic arm with visual fusion technology’, IEEE Trans. Ind. Inf., 2017, 14, (9), pp. 3822-3830
[3] LiZ.HuangB., and YeZ.et al.: ‘Physical human-robot interaction of a robotic exoskeleton by admittance control’, IEEE Trans. Ind. Electron., 2018, 65, (12), pp. 9614-9624
[4] WangY.WangR., and WangS.et al.: ‘Underwater bio‐inspired propulsion: from inspection to manipulation’, IEEE Trans. Ind. Electron., 2019, in press, doi: https://doi.org/10.1109/TIE.2019.2944082 · doi:10.1109/TIE.2019.2944082
[5] LuoZ.KitamuraN., and GuoB.Z.: ‘Shear force feedback control of flexible robot arms’, IEEE Trans. Robot. Autom., 1995, 11, (5), pp. 760-765
[6] MohamedZ.MartinsJ., and TokhiM.et al.: ‘Vibration control of a very flexible manipulator system’, Control Eng. Pract., 2005, 13, (3), pp. 267-277
[7] PayoI.FeliuV., and CortázarO.D.: ‘Force control of a very lightweight single‐link flexible arm based on coupling torque feedback’, Mechatronics, 2009, 19, (3), pp. 334-347
[8] LiuZ.LiuJ., and HeW.: ‘Adaptive boundary control of a flexible manipulator with input saturation’, Int. J. Control, 2016, 89, (6), pp. 1191-1202 · Zbl 1338.93193
[9] ZhangX.XuW., and NairS.S.et al.: ‘Pde modeling and control of a flexible two‐link manipulator’, IEEE Trans. Control Syst. Technol., 2005, 13, (2), pp. 301-312
[10] BaroudiM.SaadM., and GhieW.et al.: ‘Vibration controllability and observability of a single‐link flexible manipulator’. 2010 7th Int. Multi‐Conf. on Systems Signals and Devices (SSD), Amman, Jordan, 2010, pp. 1-6
[11] SanzA., and EtxebarriaV.: ‘Experimental control of flexible robot manipulators’ in ‘Robot Manipulators’ (InTech, Rejeka, Croatia, 2008)
[12] EndoT.SasakiM., and MatsunoF.et al.: ‘Contact‐force control of a flexible timoshenko arm in rigid/soft environment’, IEEE Trans. Autom. Control, 2017, 62, (5), pp. 2546-2553 · Zbl 1366.74034
[13] TsoS.YangT., and XuW.et al.: ‘Vibration control for a flexible‐link robot arm with deflection feedback’, Int. J. Non‐Linear Mech., 2003, 38, (1), pp. 51-62 · Zbl 1346.93279
[14] HuQ.‐l.WangZ., and GaoH.: ‘Sliding mode and shaped input vibration control of flexible systems’, IEEE Trans. Aerosp. Electron. Syst., 2008, 44, (2), pp. 503-519
[15] SunC.HeW., and HongJ.: ‘Neural network control of a flexible robotic manipulator using the lumped spring‐mass model’, IEEE Trans. Syst. Man Cybern., Syst., 2016, 47, (8), pp. 1863-1874
[16] SunC.GaoH., and HeW.et al.: ‘Fuzzy neural network control of a flexible robotic manipulator using assumed mode method’, IEEE Trans. Neural Netw. Learn. Syst., 2018, 29, (11), pp. 5214-5227
[17] HeW.OuyangY., and HongJ.: ‘Vibration control of a flexible robotic manipulator in the presence of input deadzone’, IEEE Trans. Ind. Inf., 2017, 13, (1), pp. 48-59
[18] FeniliA., and BalthazarJ.M.: ‘The rigid‐flexible nonlinear robotic manipulator: modeling and control’, Commun. Nonlinear Sci. Numer. Simul., 2011, 16, (5), pp. 2332-2341
[19] LuoZ.H.GuoB.Z., and MorgülO.: ‘Stability and stabilization of infinite dimensional systems with applications’ (Springer Verlag, London, UK, 1999) · Zbl 0922.93001
[20] LiuZ.LiuJ.‐K., and HeW.: ‘Modeling and vibration control of a flexible aerial refueling hose with variable lengths and input constraint’, Automatica, 2017, 77, (3), pp. 302-310 · Zbl 1355.93037
[21] ZhaoZ.LiuY., and HeW.et al.: ‘Adaptive boundary control of an axially moving belt system with high acceleration/deceleration’, IET Control Theory Applic., 2016, 10, (11), pp. 1299-1306
[22] ParanjapeA.A.GuanJ., and ChungS.‐J.et al.: ‘PDE boundary control for flexible articulated wings on a robotic aircraft’, IEEE Trans. Robot., 2013, 29, (3), pp. 625-640
[23] WuH.‐N., and WangJ.‐W.: ‘Static output feedback control via PDE boundary and ODE measurements in linear cascaded ODE-beam systems’, Automatica, 2014, 50, (11), pp. 2787-2798 · Zbl 1300.93081
[24] KarafyllisI., and KrsticM.: ‘Sampled‐data boundary feedback control of 1‐d parabolic pdes’, Automatica, 2018, 87, pp. 226-237 · Zbl 1378.93077
[25] HeX.HeW., and ShiJ.et al.: ‘Boundary vibration control of variable length crane systems in two dimensional space with output constraints’, IEEE/ASME Trans. Mechatronics, 2017, 22, (5), pp. 1952-1962
[26] HeW., and GeS.S.: ‘Cooperative control of a nonuniform gantry crane with constrained tension’, Automatica, 2016, 66, pp. 146-154 · Zbl 1335.93012
[27] YangK.J.HongK.S., and MatsunoF.: ‘Boundary control of a translating tensioned beam with varying speed’, IEEE/ASME Trans. Mechatronics, 2005, 10, (5), pp. 594-597
[28] CaoF., and LiuJ.: ‘Boundary control for a rigid‐flexible manipulator with input constraints based on ODE‐PDE model’, J. Comput. Nonlinear Dyn., 2019, 14, (9), p. 094501 (7p.)
[29] MehtaA.J., and BandyopadhyayB.: ‘Frequency‐shaped sliding mode control using output sampled measurements’, IEEE Trans. Ind. Electron., 2009, 56, (1), pp. 28-35
[30] WeiJ.QiuZ., and WangY.: ‘Experimental comparison research on active vibration control for flexible piezoelectric manipulator using fuzzy controller’, J. Intell. Robotic Syst., 2010, 59, (1), pp. 31-56 · Zbl 1203.68277
[31] WuH.‐N.WangH.‐D., and GuoL.: ‘Disturbance rejection fuzzy control for nonlinear parabolic PDE systems via multiple observers’, IEEE Trans. Fuzzy Syst., 2016, 24, (6), pp. 1334-1348
[32] KarkoubM.TammaK., and BalasG.: ‘Robust control of two‐link flexible manipulators using the \(\mu \) ‐synthesis technique’, J. Vib. Control, 1999, 5, (4), pp. 559-576
[33] BhikkajiB.MoheimaniS.O.R., and PetersenI.: ‘A negative imaginary approach to modeling and control of a collocated structure’, IEEE/ASME Trans. Mechatronics, 2012, 17, (4), pp. 717-727
[34] EndoT.MatsunoF., and JiaY.: ‘Boundary cooperative control by flexible timoshenko arms’, Automatica, 2017, 81, pp. 377-389 · Zbl 1372.93013
[35] HeW.MengT., and HuangD.et al.: ‘Adaptive boundary iterative learning control for an Euler-Bernoulli beam system with input constraint’, IEEE Trans. Neural Netw. Learn. Syst., 2017, 29, (5), pp. 1539-1549
[36] HeW., and GeS.S.: ‘Vibration control of a flexible beam with output constraint’, IEEE Trans. Ind. Electron., 2015, 62, (8), pp. 5023-5030
[37] LuL.ChenZ., and YaoB.et al.: ‘A two‐loop performance oriented tip tracking control of a linear motor driven flexible beam system with experiments’, IEEE Trans. Ind. Electron., 2013, 60, (3), pp. 1011-1022
[38] Quanser Inc.: ‘SRV02 Rotary Servo Base Unit User Manual’. 2010
[39] GoldsteinH.: ‘Classical mechanics’ (Addison‐Wesley, Massachusetts, USA, 1951) · Zbl 0043.18001
[40] ZimmertN.PertschA., and SawodnyO.: ‘2‐DOF control of a fire‐rescue turntable ladder’, IEEE Trans. Control Syst. Technol., 2011, 20, (2), pp. 438-452
[41] Quanser Inc.: ‘SRV02 User Manual’. 2009
[42] MandaliP.SunQ., and KanamiyaY.: ‘A pseudo‐rigid model for the inverse dynamics of an Euler beam’, Appl. Math. Model., 2011, 35, (8), pp. 3854-3865 · Zbl 1221.74049
[43] KhalilH.K., and PralyL.: ‘High‐gain observers in nonlinear feedback control’, Int. J. Robust Nonlinear Control, 2014, 24, (6), pp. 993-1015 · Zbl 1291.93054
[44] ZhaoY.DuanZ., and WenG.et al.: ‘Distributed finite‐time tracking control for multi‐agent systems: an observer‐based approach’, Syst. Control Lett., 2013, 62, (1), pp. 22-28 · Zbl 1257.93011
[45] ZhaoY.LiuY., and WenG.et al.: ‘Edge‐based finite‐time protocol analysis with final consensus value and settling time estimations’, IEEE Trans. Cybern., 2018, in press, doi: https://doi.org/10.1109/TCYB.2018.2872806 · doi:10.1109/TCYB.2018.2872806
[46] LiuY.ZhaoY., and RenW.et al.: ‘Appointed‐time consensus: accurate and practical designs’, Automatica, 2018, 89, pp. 425-429 · Zbl 1388.93010
[47] LiH.ZhaoS., and HeW.et al.: ‘Adaptive finite‐time tracking control of full state constrained nonlinear systems with dead‐zone’, Automatica, 2019, 100, pp. 99-107 · Zbl 1411.93102
[48] DoK.: ‘Inverse optimal gain assignment control of evolution systems and its application to boundary control of marine risers’, Automatica, 2019, 106, pp. 242-256 · Zbl 1429.93161
[49] WuG.SunJ., and ChenJ.: ‘Optimal linear quadratic regulator of switched systems’, IEEE Trans. Autom. Control, 2019, 64, (7), pp. 2898-2904 · Zbl 1482.93292
[50] ZhaoY.LiuY., and WenG.et al.: ‘Designing distributed specified‐time consensus protocols for linear multi‐agent systems over directed graphs’, IEEE Trans. Autom. Control, 2019, 64, (7), pp. 2945-2952 · Zbl 1482.93065
[51] LiZ.HuangB., and AjoudaniA.et al.: ‘Asymmetric bimanual control of dual‐arm exoskeletons for human‐cooperative manipulations’, IEEE Trans. Robot., 2017, 34, (1), pp. 264-271
[52] HeW.LiZ., and DongY.et al.: ‘Design and adaptive control for an upper limb robotic exoskeleton in presence of input saturation’, IEEE Trans. Neural Netw. Learn. Syst., 2019, 30, (1), pp. 97-108
[53] HeW., and DongY.: ‘Adaptive fuzzy neural network control for a constrained robot using impedance learning’, IEEE Trans. Neural Netw. Learn. Syst., 2018, 29, (4), pp. 1174-1186
[54] HeW.YanZ., and SunC.et al.: ‘Adaptive neural network control of a flapping wing micro aerial vehicle with disturbance observer’, IEEE Trans. Cybern., 2017, 47, (10), pp. 3452-3465
[55] ChenM.ShaoS.‐Y., and JiangB.: ‘Adaptive neural control of uncertain nonlinear systems using disturbance observer’, IEEE Trans. Cybern., 2017, 47, (10), pp. 3110-3123
[56] ZhaoY.LiuY., and WenG.et al.: ‘Distributed average tracking for Lipschitz‐type of nonlinear dynamical systems’, IEEE Trans. Cybern., 2019, 49, (12), pp. 4140-4152
[57] LiH.WangL., and DuH.et al.: ‘Adaptive fuzzy backstepping tracking control for strict‐feedback systems with input delay’, IEEE Trans. Fuzzy Syst., 2016, 25, (3), pp. 642-652
[58] ChenM., and TaoG.: ‘Adaptive fault‐tolerant control of uncertain nonlinear large‐scale systems with unknown dead zone’, IEEE Trans. Cybern., 2016, 46, (8), pp. 1851-1862
[59] LhachemiH.SaussiéD., and ZhuG.: ‘Boundary control of a nonhomogeneous flexible wing with bounded input disturbances’, IEEE Trans. Autom. Control SEP, 2019, 64, (2), pp. 854-861 · Zbl 1482.93494
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.