×

Composite SAR imaging using sequential joint sparsity. (English) Zbl 1415.65050

Summary: This paper investigates accurate and efficient \(\ell_1\) regularization methods for generating synthetic aperture radar (SAR) images. Although \(\ell_1\) regularization algorithms are already employed in SAR imaging, practical and efficient implementation in terms of real time imaging remain a challenge. Here, we demonstrate that fast numerical operators can be used to robustly implement \(\ell_1\) regularization methods that are as or more efficient than traditional approaches such as back projection, while providing superior image quality. In particular, we develop a sequential joint sparsity model for composite SAR imaging which naturally combines the joint sparsity methodology with composite SAR. Our technique, which can be implemented using standard, fractional, or higher order total variation regularization, is able to reduce the effects of speckle and other noisy artifacts with little additional computational cost. Finally, we show that generalizing total variation regularization to non-integer and higher orders provides improved flexibility and robustness for SAR imaging.

MSC:

65D18 Numerical aspects of computer graphics, image analysis, and computational geometry
68U10 Computing methodologies for image processing
Full Text: DOI

References:

[1] Civilian vehicle data dome overview, accessed: 19 August 2016
[2] GOTCHA volumetric SAR data set overview, accessed: 19 August 2016
[3] Tomviz software for tomographic visualization of 3D scientific data, accessed: 06 September 2016
[4] Andersson, F.; Moses, R.; Natterer, F., Fast Fourier methods for synthetic aperture radar imaging, IEEE Trans. Aerosp. Electron. Syst., 48, 1, 215-229 (2012)
[5] Archibald, R.; Gelb, A.; Platte, R. B., Image reconstruction from undersampled Fourier data using the polynomial annihilation transform, J. Sci. Comput., 67, 2, 432-452 (2016) · Zbl 1339.65026
[6] Archibald, R.; Gelb, A.; Yoon, J., Polynomial fitting for edge detection in irregularly sampled signals and images, SIAM J. Numer. Anal., 43, 1, 259-279 (2005) · Zbl 1093.41009
[7] Argenti, F.; Lapini, A.; Bianchi, T.; Alparone, L., A tutorial on speckle reduction in synthetic aperture radar images, IEEE Geosci. Remote Sens. Mag., 1, 3, 6-35 (2013)
[8] Averbuch, A.; Coifman, R.; Donoho, D.; Elad, M.; Israeli, M., Fast and accurate polar Fourier transform, Appl. Comput. Harmon. Anal., 21, 2, 145-167 (2006) · Zbl 1107.65127
[9] Barzilai, J.; Borwein, J. M., Two-point step size gradient methods, IMA J. Numer. Anal., 8, 1, 141-148 (1988) · Zbl 0638.65055
[10] Cetin, M.; Karl, W. C., Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization, IEEE Trans. Image Process., 10, 4, 623-631 (2001) · Zbl 1036.68603
[11] Cetin, M.; Moses, R. L., SAR imaging from partial-aperture data with frequency-band omissions, (Defense and Security (2005), International Society for Optics and Photonics), 32-43
[12] Cetin, M.; Onhon, O.; Samadi, S., Handling phase in sparse reconstruction for SAR: imaging, autofocusing, and moving targets, (9th European Conference on Synthetic Aperture Radar. 9th European Conference on Synthetic Aperture Radar, 2012, EUSAR (2012)), 207-210
[13] Chan, T.; Marquina, A.; Mulet, P., High-order total variation-based image restoration, SIAM J. Sci. Comput., 22, 2, 503-516 (2000) · Zbl 0968.68175
[14] Cheney, M.; Borden, B., Fundamentals of Radar Imaging (2009), Society for Industrial and Applied Mathematics · Zbl 1192.78002
[15] Colton, D.; Kress, R., Inverse Acoustic and Electromagnetic Scattering Theory (1992), Springer · Zbl 0760.35053
[16] Dong, F.; Chen, Y., A fractional-order derivative based variational framework for image denoising, Inverse Probl. Imaging, 10, 1 (2016) · Zbl 1335.49048
[17] Fessler, J.; Sutton, B., Nonuniform fast Fourier transforms using min-max interpolation, IEEE Trans. Signal Process., 51, 2, 560-574 (2003) · Zbl 1369.94048
[18] Fornasier, M.; Rauhut, H., Recovery algorithms for vector-valued data with joint sparsity constraints, SIAM J. Numer. Anal., 46, 2, 577-613 (2008) · Zbl 1211.65066
[19] Goldstein, T.; Osher, S., The split Bregman method for l1-regularized problems, SIAM J. Imaging Sci., 2, 2, 323-343 (2009) · Zbl 1177.65088
[20] Gorham, L. A.; Moore, L. J., SAR image formation toolbox for MATLAB, (SPIE Defense, Security, and Sensing (2010)), Article 769906 pp.
[21] Greengard, L.; Lee, J.-Y., Accelerating the nonuniform fast Fourier transform, SIAM Rev., 46, 3, 443-454 (2004) · Zbl 1064.65156
[22] Jakowatz, C. V.; Wahl, D. E.; Eichel, P. H.; Ghiglia, D. C.; Thompson, P. A., Range Resolving Techniques, 1-31 (1996), Springer US: Springer US Boston, MA
[23] Jakowatz, C. V.; Wahl, D. E.; Eichel, P. H.; Ghiglia, D. C.; Thompson, P. A., A Tomographic Foundation for Spotlight-Mode SAR Imaging, 33-103 (1996), Springer US: Springer US Boston, MA
[24] Li, C.; Yin, W.; Jiang, H.; Zhang, Y., An efficient augmented Lagrangian method with applications to total variation minimization, Comput. Optim. Appl., 56, 3, 507-530 (2013) · Zbl 1287.90066
[25] Moses, R. L.; Potter, L. C.; Cetin, M., Wide-angle SAR imaging, (Defense and Security (2004), International Society for Optics and Photonics), 164-175
[26] Natterer, F.; Cheney, M.; Borden, B., Resolution for radar and X-ray tomography, Inverse Probl., 19, 6, Article S55 pp. (2003) · Zbl 1045.65114
[27] Ni, K.-Y.; Rao, S., SAR moving target imaging using sparse and low-rank decomposition, (SPIE Defense + Security (2014), International Society for Optics and Photonics), Article 90771D pp.
[28] Paulson, C., Utilizing Glint Phenomenology to Perform Classification of Civilian Vehicles Using Synthetic Aperture Radar (2013), University of Florida, PhD thesis
[29] Potter, L. C.; Ertin, E.; Parker, J. T.; Cetin, M., Sparsity and compressed sensing in radar imaging, Proc. IEEE, 98, 6, 1006-1020 (2010)
[30] Powell, M. J.D., Restart procedures for the conjugate gradient method, Math. Program., 12, 1, 241-254 (1977) · Zbl 0396.90072
[31] Ramakrishnan, N.; Ertin, E.; Moses, R. L., Enhancement of coupled multichannel images using sparsity constraints, IEEE Trans. Image Process., 19, 8, 2115-2126 (2010) · Zbl 1371.94311
[32] Rigling, B. D., Raider tracer: a MATLAB-based electromagnetic scattering simulator, Radar Modeling and Measurement. Radar Modeling and Measurement, Proc. SPIE, 6568 (2007)
[33] Sanders, T., Matlab imaging algorithms: image reconstruction, restoration, and alignment, with a focus in tomography, accessed: 19 August 2016
[34] Sanders, T.; Gelb, A.; Platte, R. B.; Arslan, I.; Landskron, K., Recovering fine details from under-resolved electron tomography data using higher order total variation l1 regularization, Ultramicroscopy, 174, 97-105 (2017)
[35] Stojanovic, I.; Cetin, M.; Karl, W. C., Joint space aspect reconstruction of wide-angle SAR exploiting sparsity, (SPIE Defense and Security Symposium (2008), International Society for Optics and Photonics), Article 697005 pp.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.