×

Illumination strategies for intensity-only imaging. (English) Zbl 1326.49057

Summary: We propose a new strategy for narrow band, active array imaging of weak localized scatterers when only the intensities are recorded and measured at the array. We consider a homogeneous medium so that wave propagation is fully coherent. We show that imaging with intensity-only measurements can be carried out using the time reversal operator of the imaging system, which can be obtained from intensity measurements using an appropriate illumination strategy and the polarization identity. Once the time reversal operator has been obtained, we show that the images can be formed using its Singular Value Decomposition (SVD). We use two SVD-based methods to image the scatterers. The proposed approach is simple and efficient. It does not need prior information about the sought image, and it guarantees exact recovery in the noise-free case. Furthermore, it is robust with respect to additive noise. Detailed numerical simulations illustrate the performance of the proposed imaging strategy when only the intensities are captured.

MSC:

49N45 Inverse problems in optimal control
49N30 Problems with incomplete information (optimization)
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
68U10 Computing methodologies for image processing
78A46 Inverse problems (including inverse scattering) in optics and electromagnetic theory

Software:

PhaseLift

References:

[1] L. Borcea, C. Tsogka, G. Papanicolaou, and J. Berryman, {\it Imaging and time reversal in random media}, Inverse Problems, 18 (2002), pp. 1247-1279. · Zbl 1047.74032
[2] L. Borcea, G. Papanicolaou, and C. Tsogka, {\it Adaptive interferometric imaging in clutter and optimal illumination}, Inverse Problems, 22 (2006), pp. 1405-1436. · Zbl 1094.62119
[3] L. Borcea, G. Papanicolaou, and C. Tsogka, {\it Optimal waveform design for array imaging}, Inverse Problems, 23 (2007), pp. 1973-2021. · Zbl 1133.94009
[4] L. Borcea, G. Papanicolaou, C. Tsogka, and J. Berryman, {\it Imaging and time reversal in random media}, Inverse Problems, 18 (2002), 1247-1279. · Zbl 1047.74032
[5] L. Borcea, G. Papanicolaou, and F. G. Vasquez, {\it Edge illumination and imaging of extended reflectors}, SIAM J. Imaging Sci., 1 (2008), pp. 75-114. · Zbl 1132.35496
[6] J. F. Cai, E. J. Candès, and Z. Shen, {\it A singular value thresholding algorithm for matrix completion}, SIAM J. Optim., 20 (2008), pp. 1956-1982. · Zbl 1201.90155
[7] E. J. Candès, Y. C. Eldar, T. Strohmer, and V. Voroninski, {\it Phase retrieval via matrix completion,} SIAM J. Imaging Sci., 6 (2013), pp. 199-225. · Zbl 1280.49052
[8] E. J. Candès and B. Recht, {\it Exact matrix completion via convex optimization}, Commun. ACM, 55 (2012), pp. 111-119. · Zbl 1219.90124
[9] E. Candès and T. Tao, {\it Decoding by linear programming}, IEEE Trans. Inform. Theory, 51 (2005), pp. 4203-4215. · Zbl 1264.94121
[10] M. Cassier and C. Hazard, {\it Space-time focusing of acoustic waves on unknown scatterers}, Wave Motion, 51 (2014), pp. 1254-1272. · Zbl 1456.74087
[11] A. Chai, M. Moscoso, and G. Papanicolaou, {\it Array imaging using intensity-only measurements}, Inverse Problems, 27 (2011), 015005. · Zbl 1207.78022
[12] A. Chai, M. Moscoso, and G. Papanicolaou, {\it Robust imaging of localized scatterers using the singular value decomposition and \(ℓ_1\) optimization}, Inverse Problems, 29 (2013), 025016. · Zbl 1284.78007
[13] A. Chai, M. Moscoso, and G. Papanicolaou, {\it Imaging strong localized scatterers with sparsity promoting optimization}, SIAM J. Imaging Sci., 7 (2014), pp. 1358-1387. · Zbl 1298.49055
[14] J. Chen and X. Huo, {\it Theoretical results on sparse representations of multiple measurement Vectors}, IEEE Trans. Signal Process., 54 (2006), pp. 4634-4643. · Zbl 1375.94051
[15] S. F. Cotter, B. D. Rao, K. Engan, and K. Kreutz-Delgado, {\it Sparse solutions to linear inverse problems with multiple measurement vectors}, IEEE Trans. Signal Process, 53 (2005), pp. 2477-2488. · Zbl 1372.65123
[16] J. C. Dainty and J. R. Fienup, {\it Phase retrieval and image reconstruction for astronomy}, in Image Recovery: Theory and Application, H. Stark, ed., Academic Press, New York, 1987, pp. 231-275.
[17] D. Donoho, M. Elad, and V. Temlyakov, {\it Stable recovery of sparse overcomplete representations in the presence of noise}, IEEE Trans. Inform. Theory, 52 (2006), pp. 6-18. · Zbl 1288.94017
[18] Y. Eldar and H. Rauhut, {\it Average case analysis of multichannel sparse recovery using convex relaxation}, IEEE Trans. Inform. Theory, 56 (2010), pp. 505-5019. · Zbl 1366.94095
[19] A. Fannjiang, {\it Absolute uniqueness in phase retrieval with random illumination}, Inverse Problems, 28 (2012), 075008. · Zbl 1250.78024
[20] A. Fannjiang and W. Liao, {\it Fourier phasing with phase-uncertain mask}, Inverse Problems, 29 (2013), 125001. · Zbl 1286.65190
[21] R. W. Gerchberg and W. O. Saxton, {\it A practical algorithm for the determination of the phase from image and diffraction plane pictures}, Optik, 35 (1972), pp. 237-246.
[22] G. Gbur and E. Wolf, {\it Diffraction tomography without phase information}, Optim. Lett., 27 (2002), pp. 1890-1892.
[23] F. Gruber, E. Marengo, and A. Devaney, {\it Time-reversal imaging with multiple signal classification considering multiple scattering between the targets}, J. Acoust. Soc. Am., 115 (2004), pp. 3042-3047.
[24] R. W. Harrison, {\it Phase problem in crystallography}, J. Opt. Soc. Amer. A, 10 (1993), pp. 1046-1055.
[25] S. Hou, K. Solna, and H. Zhao, {\it A direct imaging algorithm for extended targets}, Inverse Problems, 22 (2006), pp. 1151-1178. · Zbl 1112.78014
[26] D. Malioutov, M. Cetin, and A. Willsky, {\it A sparse signal reconstruction perspective for source localization with sensor arrays}, IEEE Trans. Signal Process., 53 (2005), pp. 3010-3022. · Zbl 1370.94191
[27] R. P. Millane, {\it Phase retrieval in crystallography and optics}, J. Opt. Soc. Amer. A, 7 (1990), pp. 394-411.
[28] S. Marchesini, {\it A unified evaluation of iterative projection algorithms for phase retrieval}, Rev. Sci. Inst., 78 (2007), 011301.
[29] M. Moscoso, A. Novikov, G. Papanicolaou, and L. Ryzhik, {\it A differential equations approach to \(ℓ_1\)-minimization with applications to array imaging}, Inverse Problems, 28 (2012), 105001. · Zbl 1267.65069
[30] E. Osherovich, M. Zibulevsky, and I. Yavneh, {\it Phase retrieval combined with digital holography} arXiv:1203.0853v1, 2012.
[31] F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, {\it Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources}, Nature Physics, 2 (2006), pp. 258-261.
[32] O. Raz, N. Dudovich, and B. Nadler, {\it Vectorial Phase Retrieval of 1-D Signals}, IEEE Trans. Signal Process., 61 (2013), pp. 1632-1643. · Zbl 1393.94410
[33] B. Recht, M. Fazel, and P. A. Parrilo, {\it Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization}, SIAM Rev., 52 (2010), pp. 471-501. · Zbl 1198.90321
[34] K. C. Toh and S. Yun, {\it An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems}, Pac. J. Optim., 6 (2010), pp. 615-640. · Zbl 1205.90218
[35] R. Trebino and D. J. Kane, {\it Using phase retrieval to measure the intensity and phase of ultrashort pulses: Frequency-resolved optical gating}, J. Opt. Soc. Amer. A, 10 (1993), pp. 1101-1111.
[36] M. Nieto-Vesperinas, {\it A study of the performance of nonlinear least square optimization methods in the problem of phase retrieval,} J. Modern Opt., 33 (1986), pp. 713-722.
[37] A. Walther, {\it The question of phase retrieval in optics}, J. Modern Opt., 1 (1963), pp. 41-49.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.