×

On the concept of a filtered bundle. (English) Zbl 1390.58002

The authors present filtered bundles, with the prime examples being affine bundles and jet manifolds of sections of a fiber bundle. A filtered bundle is a fiber bundle with typical fiber \(\mathbb{R}^n\) for which the coordinates are assigned weights and the admissible coordinate transformations are polynomial with terms of possibly lower weight. These bundles generalize graded bundles. The authors prove Batchelor-Gawȩdzki-like theorems for filtered bundles, proving that every filtered bundle is isomorphic to a graded bundle (of the same degree) and to a split graded bundle. The authors conclude by discussing the linearization of a filtered bundle and studying double and multiple filtered bundles.

MSC:

58A20 Jets in global analysis
55R10 Fiber bundles in algebraic topology
16W70 Filtered associative rings; filtrational and graded techniques
13F20 Polynomial rings and ideals; rings of integer-valued polynomials

References:

[1] Alekseevskij, D. V., Vinogradov, A. M., Lichagin, V. V. and Geometry, I., Basic ideas and concepts of differential geometry, Encyclopaedia of Mathematical Sciences, Springer-Verlag28 (1991). · Zbl 0741.00027
[2] Bertram, W. and Souvay, A., A general construction of Weil functors, Cah. Topol. Géom. Différ. Catég.55(4) (2014) 267-313. · Zbl 1325.58001
[3] Bruce, A. J., Grabowska, K. and Grabowski, J., Linear duals of graded bundles and higher analogues of (Lie) algebroids, J. Geom. Phys.101 (2016) 71-99. · Zbl 1334.58002
[4] Bruce, A. J., Grabowska, K. and Grabowski, J., Higher order mechanics on graded bundles, J. Phys. A48 (2015), Article ID: 205203, 32 pp. · Zbl 1392.53087
[5] Bruce, A. J., Grabowski, J. and Rotkiewicz, M., Polarisation of graded bundles, SIGMA12 (2016) 30 pp. · Zbl 1359.58003
[6] Grabowska, K., Grabowski, J. and Urbański, P., Frame-independent mechanics: Geometry on affine bundles, Trav. Math.16 (2005) 107-120. · Zbl 1097.37045
[7] Grabowski, J., Graded contact manifolds and contact Courant algebroids, J. Geom. Phys.68 (2013) 27-58. · Zbl 1280.53070
[8] Grabowski, J., Jóźwikowski, M. and Rotkiewicz, M., Duality for graded manifolds, Rep. Math. Phys.80(1) (2017) 115-142. · Zbl 1384.58006
[9] Grabowski, J. and Rotkiewicz, M., Higher vector bundles and multi-graded symplectic manifolds, J. Geom. Phys.59(9) (2009) 1285-1305. · Zbl 1171.58300
[10] Grabowski, J. and Rotkiewicz, M., Graded bundles and homogeneity structures, J. Geom. Phys.62(1) (2012) 21-36. · Zbl 1244.53034
[11] Grabowski, J., Urbański, P. and Rotkiewicz, M., Double affine bundles, J. Geom. Phys.60(4) (2010) 581-598. · Zbl 1188.53023
[12] Jóźwikowski, M. and Rotkiewicz, M., A note on actions of some monoids, Differential Geom. Appl.47 (2016) 212-245. · Zbl 1347.57031
[13] Kolář, I., Michor, P. and Slovák, J., Natural Operations in Differential Geometry (Springer, Berlin, 1993). · Zbl 0782.53013
[14] Kontsevich, M., Deformation quantization of Poisson manifolds, Lett. Math. Phys.66(3) (2003) 157-216. · Zbl 1058.53065
[15] R. A. Mehta, Supergroupoids, double structures, and equivariant cohomology, Ph.D. thesis, University of California at Berkeley (2006).
[16] Michor, P. W., Topics in differential geometry, , Amer. Math. Soc., Providence93 (2008). · Zbl 1175.53002
[17] Miron, R., The Geometry of Higher-order Hamiltonian Spaces. Applications to Hamiltonian Mechanics (Kluwer, Dordrecht, 2003). · Zbl 1044.53054
[18] Morinoto, T., Théorème d’existence de solutions analytiques pour des systèmes d’ équations aux dérivées partielles non-linéaires avec singularités, C. R. Acad. Sci. Paris321(1) (1995) 1491-1496. · Zbl 0842.22009
[19] Popescu, P. and Popescu, M., Lagrangians and Hamiltonians on affine bundles and higher order geometry, Banach Center Publ.76 (2007) 451-469. · Zbl 1123.53040
[20] Pradines, J., Représentation des jets non holonomes par des morphismes vectoriels doubles soudés, C. R. Acad. Sci. Paris Sér. A278 (1974) 152-1526. · Zbl 0285.58002
[21] Roytenberg, D., On the structure of graded symplectic supermanifolds and Courant algebroids, Contemp. Math.315 (2002) 169-185. · Zbl 1036.53057
[22] Ševera, P., Some title containing the words “homotopy” and “symplectic”, e.g. this one, Trav. Math.16 (2005) 121-137. · Zbl 1102.58010
[23] Voronov, T., Graded manifolds and Drinfeld doubles for Lie bialgebroids, Contemp. Math.315 (2002) 131-168. · Zbl 1042.53056
[24] Voronov, T., \(Q\)-manifolds and higher analogs of Lie algebroids, AIP Conf. Proc.1307 (2010) 191-202. · Zbl 1260.53133
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.