×

A collocation method for Fredholm integral equations of the first kind via iterative regularization scheme. (English) Zbl 07706391

Summary: To solve the ill-posed integral equations, we use the regularized collocation method. This numerical method is a combination of the Legendre polynomials with non-stationary iterated Tikhonov regularization with fixed parameter. A theoretical justification of the proposed method under the required assumptions is detailed. Finally, numerical experiments demonstrate the efficiency of this method.

MSC:

47A52 Linear operators and ill-posed problems, regularization
65R30 Numerical methods for ill-posed problems for integral equations

References:

[1] C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang. Spectral methods: fundamentals in single domains. Springer Science & Business Media, 2007. https://doi.org/10.1007/978-3-540-30726-6. · Zbl 1093.76002 · doi:10.1007/978-3-540-30726-6
[2] Z. Chen, S. Cheng, G. Nelakanti and H. Yang. A fast multiscale Galerkin method for the first kind ill-posed integral equations via Tikhonov regulariza-tion. International Journal of Computer Mathematics, 87(3):565-582, 2010. https://doi.org/10.1080/00207160802155302. · Zbl 1219.65160 · doi:10.1080/00207160802155302
[3] M. Donatelli. On nondecreasing sequences of regularization parameters for non-stationary iterated Tikhonov. Numerical Algorithms, 60(4):651-668, 2012. · Zbl 1254.65135
[4] H.W. Engl, M. Hanke and A. Neubauer. Regularization of inverse problems, volume 375. Springer Science & Business Media, 1996. · Zbl 0859.65054
[5] L. Fanchun, Y. Suhua, L. Xingjun and P. Yubing. Multilevel iterative algorithm for solving Fredholm integral equation of the first kind. Mathematica Numerica Sinica, 35(3):225-238, 2013. https://doi.org/10.12286/jssx.2013.3.225. · Zbl 1299.65303 · doi:10.12286/jssx.2013.3.225
[6] U. Hamarik, E. Avi and A. Ganina. On the solution of ill-posed prob-lems by projection methods with a posteriori choice of the discretiza-tion level. Mathematical Modelling and Analysis, 7(2):241-252, 2002. https://doi.org/10.3846/13926292.2002.9637196. · Zbl 1068.65066 · doi:10.3846/13926292.2002.9637196
[7] M. Hanke and C.W. Groetsch. Nonstationary iterated Tikhonov regulariza-tion. Journal of Optimization Theory and Applications, 98(1):37-53, 1998. https://doi.org/10.1023/A:1022680629327. · Zbl 0910.47005 · doi:10.1023/A:1022680629327
[8] G. Huang, L. Reichel and F. Yin. Projected nonstationary iterated Tikhonov regularization. BIT Numerical Mathematics, 56(2):467-487, 2016. https://doi.org/10.1007/s10543-015-0568-7. · Zbl 1341.65017 · doi:10.1007/s10543-015-0568-7
[9] A.V. Kryanev. An iterative method for solving incorrectly posed problems. USSR Computational Mathematics and Mathematical Physics, 14(1):24-35, 1974. https://doi.org/10.1016/0041-5553(74)90133-5. · Zbl 0299.65053 · doi:10.1016/0041-5553(74)90133-5
[10] S. Lu and S.V. Pereverzev. Regularization theory for ill-posed problems. de Gruyter, Berlin, Boston, 2013. https://doi.org/10.1515/9783110286496. · Zbl 1282.47001 · doi:10.1515/9783110286496
[11] Y. Lu, L. Shen and Y. Xu. Multi-parameter regularization methods for high-resolution image reconstruction with displacement errors. IEEE Trans-actions on Circuits and Systems I: Regular Papers, 54(8):1788-1799, 2007. https://doi.org/10.1109/TCSI.2007.902535. · Zbl 1374.94240 · doi:10.1109/TCSI.2007.902535
[12] X. Luo, L. Fan, Y. Wu and F. Li. Fast multi-level iteration meth-ods with compression technique for solving ill-posed integral equations. Journal of Computational and Applied Mathematics, 256:131-151, 2014. https://doi.org/10.1016/j.cam.2013.07.043. · Zbl 1314.65163 · doi:10.1016/j.cam.2013.07.043
[13] M.T. Nair. Linear operator equations: approximation and regularization. World Scientific, 2009. · Zbl 1208.47002
[14] M.T. Nair. Quadrature based collocation methods for integral equations of the first kind. Advances in Computational Mathematics, 36(2):315-329, 2012. https://doi.org/10.1007/s10444-011-9196-1. · Zbl 1261.65140 · doi:10.1007/s10444-011-9196-1
[15] M.T. Nair and S.V. Pereverzev. Regularized collocation method for Fredholm integral equations of the first kind. Journal of Complexity, 23(4):454-467, 2007. https://doi.org/10.1016/j.jco.2006.09.002. · Zbl 1131.65113 · doi:10.1016/j.jco.2006.09.002
[16] B. Neggal, N. Boussetila and F. Rebbani. Projected Tikhonov regularization method for Fredholm integral equations of the first kind. Journal of Inequalities and Applications, 2016(195):1-21, 2016. https://doi.org/10.1186/s13660-016-1137-6. · Zbl 1347.65198 · doi:10.1186/s13660-016-1137-6
[17] B. Nemati Saray. Sparse multiscale representation of Galerkin method for solving linear-mixed Volterra-Fredholm integral equations. Math-ematical Methods in the Applied Sciences, 43(5):2601-2614, 2020. https://doi.org/doi.org/10.1002/mma.6068. · Zbl 1454.65191 · doi:10.1002/mma.6068
[18] T. Poggio and C.R. Shelton. On the mathematical foundations of learn-ing. Bulletin of the American Mathematical Society, 39(1):1-49, 2002. https://doi.org/10.1090/S0273-0979-01-00923-5. · Zbl 0983.68162 · doi:10.1090/S0273-0979-01-00923-5
[19] A. Quarteroni and A. Valli. Numerical approximation of partial differential equa-tions, volume 23. Springer Science & Business Media, 2008. · Zbl 1151.65339
[20] M.P. Rajan. A modified convergence analysis for solving Fredholm integral equations of the first kind. Integral Equations and Operator Theory, 49(4):511-516, 2004. https://doi.org/10.1007/s00020-002-1213-9. · Zbl 1060.65137 · doi:10.1007/s00020-002-1213-9
[21] B. Tahar, B. Nadjib and R. Faouzia. A variant of projection-regularization method for ill-posed linear operator equations. In-ternational Journal of Computational Methods, 18(04):2150008, 2021. https://doi.org/10.1142/S0219876221500080. · Zbl 07446897 · doi:10.1142/S0219876221500080
[22] J. Thomas King and D. Chillingworth. Approximation of generalized inverses by iterated regularization. Numerical Functional Analysis and Optimization, 1(5):499-513, 1979. https://doi.org/10.1080/01630567908816031. · Zbl 0446.65026 · doi:10.1080/01630567908816031
[23] C.R. Vogel and M.E. Oman. Fast, robust total variation-based reconstruction of noisy, blurred images. IEEE transactions on image processing, 7(6):813-824, 1998. https://doi.org/10.1109/83.679423. · Zbl 0993.94519 · doi:10.1109/83.679423
[24] S. Yang, X. Luo, F. Li and G. Long. A fast multiscale Galerkin method for the first kind ill-posed integral equations via iterated regular-ization. Applied Mathematics and Computation, 219(21):10527-10537, 2013. https://doi.org/10.1016/j.amc.2013.04.029. · Zbl 1304.65281 · doi:10.1016/j.amc.2013.04.029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.