×

Unconditionally stable integration of Maxwell’s equations. (English) Zbl 1170.78004

This paper discusses unconditionally stable integration for a general semi-discrete Maxwell system on space grids that exclude the alternating direction implicit (ADI) approach, and addresses the question whether fully implicit and exponential time integration, eliminating any temporal step-size stability restriction, can be feasible and efficient?
For solving the systems of linear algebraic equations arising with implicit integrators , the conjugate gradient iterative method with preconditioning is used, and for exponential integration, Krylov subspace iteration is considered. The paper may be of interest to someone, in the field of Numerical Linear Algebra, working on efficient solvers.

MSC:

78M25 Numerical methods in optics (MSC2010)
65L05 Numerical methods for initial value problems involving ordinary differential equations
65L20 Stability and convergence of numerical methods for ordinary differential equations
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M20 Method of lines for initial value and initial-boundary value problems involving PDEs

Software:

Expint; ILUT

References:

[1] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions (1968), Dover Publications, Inc.: Dover Publications, Inc. New York · Zbl 0515.33001
[2] Benhassine, S.; Carpes, W. P.; Pichon, L., Comparison of mass lumping techniques for solving the 3D Maxwell’s equations in the time domain, IEEE Trans. Magnet., 36, 1548-1552 (2000)
[3] Benzi, M.; Golub, G. H.; Liesen, J., Numerical solution of saddle point problems, Acta Numer., 14, 1-137 (2005) · Zbl 1115.65034
[4] Berland, H.; Skaflestad, B.; Wright, W., EXPINT - a Matlab package for exponential integrators, ACM Trans. Math. Software, 33, 1 (2007), Article 4
[5] Botchev, M. A.; Sleijpen, G. L.G.; van der Vorst, H. A., Stability control for approximate implicit time stepping schemes with minimum residual iterations, Appl. Numer. Math., 31, 239-253 (1999) · Zbl 0941.65074
[6] Botchev, M. A.; van der Vorst, H. A., A parallel nearly implicit scheme, J. Comput. Appl. Math., 137, 229-243 (2001) · Zbl 0991.65067
[7] M.A. Botchev, J.G. Verwer, Numerical integration of damped Maxwell equations, CWI Preprint MAS-E0804, SIAM J. Sci. Comput., 31 (2009) 1322-1346.; M.A. Botchev, J.G. Verwer, Numerical integration of damped Maxwell equations, CWI Preprint MAS-E0804, SIAM J. Sci. Comput., 31 (2009) 1322-1346. · Zbl 1229.78026
[8] M. Caliari, A. Ostermann, Implementation of exponential Rosenbrock-type integrators, Appl. Numer. Math. 59 (2009) 568-581.; M. Caliari, A. Ostermann, Implementation of exponential Rosenbrock-type integrators, Appl. Numer. Math. 59 (2009) 568-581. · Zbl 1160.65318
[9] Celledoni, E.; Cohen, D.; Owren, B., Symmetric exponential integrators with an application to the cubic Schrödinger equation, Found. Comput. Math., 8, 303-317 (2008) · Zbl 1147.65102
[10] Certaine, J., The solution of ordinary differential equations with large time constants, (Ralston, A.; Wilf, H. S.; Einstein, K., Mathematical Methods for Digital Computers (1960), Wiley: Wiley New York), 128-132
[11] Cox, S. M.; Matthews, P. C., Exponential time differencing for stiff systems, J. Comput. Phys., 176, 430-455 (2002) · Zbl 1005.65069
[12] Dekker, K.; Verwer, J. G., Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations (1984), North-Holland: North-Holland Amsterdam · Zbl 0571.65057
[13] De Raedt, H., Advances in unconditionally stable techniques, (Taflove, A.; Hagness, S. C., Computational Electrodynamics, The Finite-Difference Time-Domain Method (2005), Artech House: Artech House Boston, London), (Chapter 18)
[14] Druskin, V. L.; Knizhnerman, L. A., Two polynomial methods of calculating functions of symmetric matrices, USSR Comput. Math. Math. Phys., 29, 112-121 (1989) · Zbl 0719.65035
[15] Druskin, V. L.; Knizhnerman, L. A., Krylov subspace approximations of eigenpairs and matrix functions in exact and computer arithmetic, Numer. Linear Algebra Appl., 2, 205-217 (1995) · Zbl 0831.65042
[16] van den Eshof, J.; Hochbruck, M., Preconditioning Lanczos approximations to the matrix exponential, SIAM J. Sci. Comput., 27, 1438-1457 (2006) · Zbl 1105.65051
[17] Faragó, I.; Horváth, R.; Schilders, W. H.A., Investigation of numerical time-integrations of Maxwell’s equations using the staggered grid spatial discretization, Internat. J. Numer. Model Electron Network Dev., 18, 149-169 (2005) · Zbl 1108.78016
[18] Fischer, P. F., Projection techniques for iterative solution of \(Ax = b\) with successive right-hand sides, Comput. Methods Appl. Mech. Engrg., 163, 193-204 (1996) · Zbl 0960.76063
[19] Fisher, A.; Rieben, R. N.; Rodrigue, G. H.; White, D. A., A generalized mass lumping technique for vector finite-element solutions of the time-dependent Maxwell equations, IEEE Trans. Antennas and Propagation, 53, 2900-2910 (2005) · Zbl 1369.78663
[20] Fornberg, B.; Zuev, J.; Lee, J., Stability and accuracy of time-extrapolated ADI-FDTD methods for solving wave equations, J. Comput. Appl. Math., 200, 178-192 (2007) · Zbl 1119.78016
[21] Friedli, A., Verallgemeinerte Runge-Kutta Verfahren zur Lösung steifer Differentialgleichungssysteme, (Bulirsch, R.; Grigorieff, R. D.; Schröder, J., Numerical Treatment of Differential Equations. Numerical Treatment of Differential Equations, Lecture Notes in Math., vol. 631 (1978), Springer: Springer Berlin) · Zbl 0368.65039
[22] Friesner, R. A.; Tuckerman, L. S.; Dornblaser, B. C.; Russo, T. V., A method for exponential propagation of large systems of stiff nonlinear differential equations, J. Sci. Comput., 4, 327-354 (1989)
[23] Hochbruck, M.; Lubich, Ch., On Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 34, 1911-1925 (1997) · Zbl 0888.65032
[24] Hochbruck, M.; Lubich, Ch.; Selhofer, H., Exponential integrators for large systems of differential equations, SIAM J. Sci. Comput., 19, 1552-1574 (1998) · Zbl 0912.65058
[25] Hochbruck, M.; Lubich, Ch., Exponential integrators for quantum-classical molecular dynamics, BIT, 39, 620-645 (1999) · Zbl 0985.81002
[26] M. Hochbruck, A. Ostermann, J. Schweitzer, Exponential Rosenbrock-type methods, in press.; M. Hochbruck, A. Ostermann, J. Schweitzer, Exponential Rosenbrock-type methods, in press. · Zbl 1193.65119
[27] P.J. van der Houwen, J.G. Verwer, Generalized linear multistep methods: I. Development of algorithms with non-zero parasitic roots, Report NW 10/74, Mathematisch Centrum, Amsterdam, 1974. <http://repository.cwi.nl:8888/cwi_repository/docs/I/09/9059A.pdf>.; P.J. van der Houwen, J.G. Verwer, Generalized linear multistep methods: I. Development of algorithms with non-zero parasitic roots, Report NW 10/74, Mathematisch Centrum, Amsterdam, 1974. <http://repository.cwi.nl:8888/cwi_repository/docs/I/09/9059A.pdf>. · Zbl 0353.65052
[28] Hundsdorfer, W.; Verwer, J. G., Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, Springer Series in Computational Mathematics, vol. 33 (2003), Springer: Springer Berlin · Zbl 1030.65100
[29] Knizhnerman, L. A., Calculation of functions of unsymmetric matrices using Arnoldi’s method, USSR Comput. Math. Math. Phys., 31, 1-9 (1991) · Zbl 0774.65021
[30] Lawson, J. D., Generalized Runge-Kutta processes for stable systems with large Lipschitz constants, SIAM J. Numer. Anal., 4, 372-380 (1967) · Zbl 0223.65030
[31] Legras, J., Résolution numérique des grands systèmes différentiels linéaires, Numer. Math., 8, 14-28 (1966) · Zbl 0133.38404
[32] Meijerink, J. A.; van der Vorst, H. A., An iterative solution method for linear systems of which the coefficient matrix is a symmetric \(M\)-matrix, Math. Comput., 31, 148-162 (1977) · Zbl 0349.65020
[33] B. Minchev, W. Wright, A review of exponential integrators for first order semi-linear problems, Techn. Report 2/05, Dept. of Mathematics, NTNU, Trondheim, 2005.; B. Minchev, W. Wright, A review of exponential integrators for first order semi-linear problems, Techn. Report 2/05, Dept. of Mathematics, NTNU, Trondheim, 2005.
[34] Monk, P., Finite Element Methods for Maxwell’s Equations (2003), Oxford University Press · Zbl 1024.78009
[35] Namiki, T., 3D ADI-FDTD method – unconditionally stable time-domain algorithm for solving full vector Maxwell’s equations, IEEE Trans. Microwave Theory Tech., 48, 1743-1748 (2000)
[36] Nédélec, J.-C., Mixed finite elements in \(R^3\), Numer. Math., 35, 315-341 (1980) · Zbl 0419.65069
[37] Nédélec, J.-C., A new family of mixed finite elements in \(R^3\), Numer. Math., 50, 57-81 (1986) · Zbl 0625.65107
[38] Nørsett, S. P., An \(A\)-stable modification of the Adams-Bashforth methods, (Dold, A.; Echman, B., Lecture Notes in Math., vol. 109 (1969), Springer), 214-219 · Zbl 0188.22502
[39] Petropoulos, P. G., Analysis of exponential time differencing for FDTD in lossy dielectrics, IEEE Trans. Antennas and Propagation, 45, 1054-1057 (1997)
[40] Rodrigue, G.; White, D., A vector finite element time-domain method for solving Maxwell’s equations on unstructured hexahedral grids, SIAM J. Sci. Comput., 23, 683-706 (2001) · Zbl 1003.78008
[41] Saad, Y., Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 29, 209-228 (1992) · Zbl 0749.65030
[42] Saad, Y., ILUT: a dual threshold incomplete LU factorization, Numer. Linear Algebra Appl., 1, 387-402 (1994) · Zbl 0838.65026
[43] Y. Saad, Iterative methods for sparse linear systems, 2000. <http://www-users.cs.umn.edu/ saad/books.html>.; Y. Saad, Iterative methods for sparse linear systems, 2000. <http://www-users.cs.umn.edu/ saad/books.html>.
[44] Sidje, R. B., Software package for computing matrix exponentials, ACM - Trans. Math. Software, 24, 130-156 (1998) · Zbl 0917.65063
[45] van der Sluis, A.; van der Vorst, H. A., The rate of convergence of conjugate gradients, Numer. Math., 48, 543-560 (1986) · Zbl 0596.65015
[46] Verwer, J. G., On generalized linear multistep methods with zero-parasitic roots and an adaptive principal root, Numer. Math., 27, 143-155 (1977) · Zbl 0326.65045
[47] van der Vorst, H. A., An iterative solution method for solving \(f(A) x = b\) using Krylov subspace information obtained for the symmetric positive definite matrix \(A\), J. Comput. Appl. Math., 18, 249-263 (1987) · Zbl 0621.65022
[48] van der Vorst, H. A., Iterative Krylov Methods for Large Linear Systems (2003), Cambridge University Press · Zbl 1023.65027
[49] Yee, K. S., Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas and Propagation, 14, 302-307 (1966) · Zbl 1155.78304
[50] Zheng, F.; Chen, Z.; Zhang, J., A finite-difference time-domain method without the Courant stability condition, IEEE Microwave Guided Wave Lett., 9, 441-443 (1999)
[51] Zheng, F.; Chen, Z.; Zhang, J., Toward the development of a three-dimensional unconditionally stabe finite-difference time-domain method, IEEE Microwave Theory Tech., 48, 1550-1558 (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.