×

Thermal aspects of Oldroyd-B nanofluid over accelerated surface with variable thermal conductivity and modified diffusion theories. (English) Zbl 1490.82031

Summary: The growing interest in emerging nanotechnologies has led the scientists towards to investigate the interaction of nanoparticles with fluids. Current continuation endeavors the rheological analysis for the Oldroyd-B nanomaterial across periodically accelerated and heated surface. The interesting features of thermophoresis and Brownian motions are presented by following famous Buongiorno nanofluid model. Further, Cattaneo-Christov heat and mass flux expressions are exploited to determine the characteristics of thermal and mass diffusions. As a novelty, the variable thermal conductivity and heat absorption/generation consequences are also utilizing the energy equation. The flow model has been developed by using concerning boundary layer equations which are converted into dimensionless forms by using appropriate variables. The analytical solution of such transmuted equations is computed by using homotopy analytic method. Various physical parameters of interest are scrutinized through various graphs. The observations from analysis convey a declining change in nanofluid concentration and temperature with variation of thermal and solutal relaxation parameters, respectively. Moreover, thermophoresis parameter causes an enhancement of concentration profile while a retarded concentration profile results with increment of Schmidt number. The obtained theoretical results reflect significant applications in cooling and heating systems, thermal sciences, manufacturing processes, extrusion systems, enhancement of transport of energy and heat resources.

MSC:

82D80 Statistical mechanics of nanostructures and nanoparticles
14J25 Special surfaces
80A23 Inverse problems in thermodynamics and heat transfer

Software:

BVPh
Full Text: DOI

References:

[1] J. B. J. Fourier, Theorie analytique da la chaleur, Paris, 1822. · JFM 15.0954.01
[2] Cattaneo, C., Atti Semin. Mat. Fis, Univ.Modena Reggio Emilia.3, 83 (1948).
[3] Christov, C. I., Mech. Res. Commun.36, 481 (2009). · Zbl 1258.80001
[4] Mustafa, M., AIP Adv.5, 047109 (2015).
[5] Hashim and Khan, M., Results Phys.7, 310 (2017).
[6] Khan, M., Ahmed, J. and Ahmad, L., J. Braz. Soc. Mech. Sci. Eng.40, 573 (2018).
[7] Sulti, F. A., J Heat Transf.141, 022003 (2018).
[8] Hayat, T., Farooq, M., Alsaedi, A. and Solamy, F. A., AIP Adv.5, 087159 (2015).
[9] Choi, S., ASME MD.66, 99 (1995).
[10] Buonigiorno, J., ASME J Heat Transf.128, 240 (2010).
[11] Turkyilmazoglu, M., Eur. J. Mech. B/Fluids59, 18 (2016). · Zbl 1408.76542
[12] Sandeep, N. and Animasaun, I. L., Alex. Eng. J.56, 263 (2017).
[13] Hayat, T., Kiyani, M. Z., Ahmad, I. and Ahmad, B., Int. J. Mech. Sci.131, 1016 (2017).
[14] Ahmad, J., Khan, M. and Ahmad, L., J. Mol. Liq.287, 110853 (2019).
[15] Turkyilmazoglu, M., Comput. Methods Prog. Biomed.179, 104997 (2019).
[16] Alwatban, A. M., Khan, S. U., Waqas, H. and Tlili, I., Processes7, 859 (2019).
[17] Khan, S. U., Waqas, H., Bhatti, M. M. and Imran, M., J. Non-Equilib. Thermodyn.45, 81 (2020).
[18] Turkyilmazoglu, M., Comput. Methods Prog. Biomed.187, 105171 (2020).
[19] Turkyilmazoglu, M., Eur. Phys. J. Plus.135, 781 (2020).
[20] Wakif, A., Animasaun, I. L., Narayana, P. V. S. and Sarojamma, G., Chin. J. Phys.68, 293 (2020).
[21] Nayak, M. K., Wakif, A., Animasaun, I. L. and Alaoui, M. S. H., Arab. J Sci. Eng.45, 5331 (2020).
[22] Wakif, A., Chamkha, A., Thumma, T., Animasaun, I. L. and Sehaqui, R., J. Therm. Anal. Calorim. (2020), https://doi.org/10.1007/s10973-020-09488-z.
[23] Thumma, T., Wakif, A. and Animasaun, I. L., Heat Transf. Asian Res.49, 2595 (2020).
[24] Wakif, A., Boulahia, Z., Ali, F., Eid, M. R. and Sehaqui, R., Int. J. Appl. Math. Comput. Sci.4, 81 (2018). · Zbl 1442.76155
[25] Zaydan, M., Wakif, A., Animasaun, I. L., Khan, U., Baleanu, D. and Sehaqui, R., Case Stud. Therm. Eng.22, 100726 (2020).
[26] Iqbal, M. S., Malik, F., Mustafa, I., Khan, l., Ghaffari, A., Riaz, A. and Nisar, K. S., Results Phys.19, 103472 (2020).
[27] Bhatti, M. M., Inventions6, 28 (2021).
[28] Shahid, A., Huang, H. L., Khalique, C. M. and Bhatti, M. M., J. Therm. Anal. Calorim.143, 2585 (2021).
[29] Arain, M. B., Bhatti, M. M., Zeeshan, A., Saeed, T. and Hobiny, A., Math. Prob. Eng.2020, 2749105 (2020), https://doi.org/10.1155/2020/2749105. · Zbl 1459.76174
[30] Sajid, M., Abbas, Z., Javed, T. and Ali, N., Can. J. Phys.88, 635 (2010).
[31] Shehzad, S. A., Alsaedi, A., Hayat, T. and Alhuthali, M. S., J. Taiwan Inst. Chem. Eng.45, 787 (2014).
[32] Kumar, K. G., Ramesh, G. K., Gireeshaa, B. J. and Gorla, R. S. R., Alex. Eng. J.57, 2139 (2018).
[33] Irfan, M., Khan, M., Khan, W. A. and Sajid, M., Appl. Phys. A124 (2018).
[34] Gireesha, B. J., Kumar, K. G., Ramesh, G. K. and Prasannakumara, B. C., Results Phys.9, 1555 (2018).
[35] Khan, S. U., Rauf, A., Shehzad, S. A., Abbas, Z. and Javed, T., Physica A Stat. Mech. Appl.527, 121179 (2019). · Zbl 07568277
[36] Tlili, I., Waqas, H., Almaneea, A., Khan, S. U. and Imran, M., Processes7, 914 (2019).
[37] Aziz, A., Muhammad, T. and Alsaedi, A., J. Braz. Soc. Mech. Sci. Eng.41, 236 (2019).
[38] Wang, C. Y., Acta Mech.72, 261 (1988). · Zbl 0678.76029
[39] Zheng, L. C., Jin, X., Zhang, X. X. and Zhang, J. H., Acta Mech. Sin.29, 667 (2013). · Zbl 1342.76140
[40] Abbas, Z., Wang, Y., Hayat, T. and Oberlack, M., Int. J. Nonlinear Mech.43, 783 (2008). · Zbl 1203.76169
[41] Khan, S. U. and Ali, N., Tech. Sci.20, 87 (2017).
[42] Khan, S. U. and Shehzad, S. A., Phys. Scr.94, 095202 (2019).
[43] Ali, Z., Zeeshan, A., Bhatti, M. M., Hobiny, A. and Saeed, T., Arab. J. Sci. Eng.6 (2021), https://doi.org/10.1007/s13369-020-05324-6.
[44] Liao, S. J., Homotopy Analysis Method in Nonlinear Differential Equations (Springer, Heidelberg, Germany, 2012). · Zbl 1253.35001
[45] Hayat, T., Aziz, A., Muhammad, T. and Alsaedi, A., J. Therm. Anal. Calorim.139, 183 (2020).
[46] Turkyilmazoglu, M., Int. J. Mech. Sci.52, 1735 (2010).
[47] Khan, S. U. and Ali, H. M., Int. J. Thermophys.41, 159 (2020).
[48] Khan, S. U., Al-Khaled, Kamel, Aldabesh, A., Awais, M. and Tlili, I., Sci. Rep.11, 3331 (2021).
[49] Turkyilmazoglu, M., Adv. Appl. Math. Mech.10, 925 (2018). · Zbl 1488.65214
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.