×

Simultaneous inference for linear mixed model parameters with an application to small area estimation. (English) Zbl 07779065

Summary: Over the past decades, linear mixed models have attracted considerable attention in various fields of applied statistics. They are popular whenever clustered, hierarchical or longitudinal data are investigated. Nonetheless, statistical tools for valid simultaneous inference for mixed parameters are rare. This is surprising because one often faces inferential problems beyond the pointwise examination of fixed or mixed parameters. For example, there is an interest in a comparative analysis of cluster-level parameters or subject-specific estimates in studies with repeated measurements. We discuss methods for simultaneous inference assuming a linear mixed model. Specifically, we develop simultaneous prediction intervals as well as multiple testing procedures for mixed parameters. They are useful for joint considerations or comparisons of cluster-level parameters. We employ a consistent bootstrap approximation of the distribution of max-type statistic to construct our tools. The numerical performance of the developed methodology is studied in simulation experiments and illustrated in a data example on household incomes in small areas.
© 2022 The Authors. International Statistical Review published by John Wiley & Sons Ltd on behalf of International Statistical Institute.

MSC:

62Fxx Parametric inference
62Jxx Linear inference, regression
62-XX Statistics

Software:

SemiPar; ConfBands

References:

[1] Basu, R., Ghosh, J.K. & Mukerjee, R. (2003). Empirical Bayes prediction intervals in a normal regression model: higher order asymptotics. Stat. Probab. Lett., 63(2), 197-203. · Zbl 1116.62305
[2] Battese, G.E., Harter, R.M. & Fuller, W.A. (1988). An error‐components model for prediction of county crop areas using survey and satellite data. J. Am. Stat. Assoc., 83(401), 28-36.
[3] Beran, R. (1988). Balanced simultaneous confidence sets. J. Am. Stat. Assoc., 83(403), 679-686. · Zbl 0662.62031
[4] Chandra, H., Sud, U.C. & Gharde, Y. (2015). Small area estimation using estimated population level auxiliary data. Commun. Stat. - Simul. Comput., 44, 1197-1209. · Zbl 1325.62009
[5] Chatterjee, S., Lahiri, P. & Li, H. (2008). Parametric bootstrap approximation to the distribution of EBLUP and related prediction intervals in linear mixed models. Ann. Statist., 36(3), 1221-1245. · Zbl 1360.62378
[6] Chernozhukov, V., Chetverikov, D. & Kato, K. (2013). Gaussian approximations and multiplier bootstrap for maxima of sums of high‐dimensional random vectors. Ann. Statist., 41(6), 2786-2819. · Zbl 1292.62030
[7] Cox, D.R. (1975). Prediction intervals and empirical Bayes confidence intervals. In Perspectives in probability and statistics (papers in honour of m. s. bartlett on the occasion of his 65th birthday), pp. 47-55. Applied Probability Trust, Univ. Sheffield, Sheffie. · Zbl 0356.62028
[8] Datta, G.S., Rao, J.N.K. & Smith, D.D. (2005). On measuring the variability of small area estimators under a basic area level model. Biometrika, 92(1), 183-196. · Zbl 1068.62027
[9] Fay, R.E. & Herriot, R.A. (1979). Estimates of income for small places: An application of James‐Stein procedures to census data. J. Am. Stat. Assoc., 74(366), 269-277.
[10] Field, C.A., Pang, Z. & Welsh, A.H. (2008). Bootstrapping data with multiple levels of variation. Can. J. Stat., 36, 521-539. · Zbl 1166.62026
[11] Francq, B.G., Lin, D. & Hoyer, W. (2019). Confidence, prediction, and tolerance in linear mixed models. Stat. Med., 38(30), 5603-5622.
[12] Ganesh, N. (2009). Simultaneous credible intervals for small area estimation problems. J. Multivariate Anal., 100(8), 1610-1621. · Zbl 1169.62335
[13] González‐Manteiga, W., Lombardia, M.J., Molina, I., Morales, D. & Santamaría, L. (2008). Bootstrap mean squared error of a small‐area EBLUP. J. Stat. Comput. Simul., 78(5), 443-462. · Zbl 1274.62094
[14] Gosh, M. (1992). Constrained Bayes estimation with applications. J. Am. Stat. Assoc., 87, 533-540. · Zbl 0781.62040
[15] Hall, P. & Maiti, T. (2006). On parametric bootstrap methods for small area prediction. J. R. Statist. Soc. B, 68(2), 221-238. · Zbl 1100.62039
[16] Henderson, C.R. (1950). Estimation of genetic parameters. Ann. Math. Statist., 21(2), 226-252.
[17] Henderson, C.R. (1975). Best linear unbiased estimation and prediction under a selection model. Biometrics, 31(2), 423-447. · Zbl 0335.62048
[18] Jacqmin‐Gadda, H., Sibillot, S., Proust, C., Molina, J.‐M. & Thiébaut, R. (2007). Robustness of the linear mixed model to misspecified error distribution. Comput. Statist. Data Anal., 51(10), 5142-5154. · Zbl 1162.62319
[19] Jiang, J. (1998). Asymptotic properties of the empirical BLUP and BLUE in mixed linear models. Stat. Sin., 8(1), 861-885. · Zbl 0901.62038
[20] Jiang, J. (2007). Linear and Generalized Linear Mixed Models and Their Applications. Springer Series in Statistics. · Zbl 1152.62040
[21] Kackar, R.N. & Harville, D.A. (1981). Unbiasedness of two‐stage estimation and prediction procedures for mixed linear models. Communs Statist. Theor. Meth., 10(13), 1249-1261. · Zbl 0473.62055
[22] Kramlinger, P., Krivobokova, T. & Sperlich, S.2018. Marginal and conditional multiple inference in linear mixed models. arXiv:1812.09250.
[23] Krivobokova, T., Kneib, T. & Claeskens, G. (2010). Simultaneous confidence bands for penalized spline estimators. J. Am. Stat. Assoc., 105(490), 852-863. · Zbl 1392.62094
[24] Kubokawa, T. (2010). Corrected empirical Bayes confidence intervals in nested error regression models. J. Korean Stat. Soc., 39(2), 221-236. · Zbl 1294.62054
[25] Lange, N. & Ryan, L. (1989). Assessing normality in random effects models. Ann. Statist., 17(2), 624-642. · Zbl 0672.62081
[26] Lombardía, M.J., López‐Vizcaíno, E. & Rueda, C. (2017). Mixed generalized Akaike information criterion for small area models. J. R. Statist. Soc. A, 180(4), 1229-1252.
[27] Lombardía, M.J., López‐Vizcaíno, E. & Rueda, C. (2018). Selection of small area estimators. Stat. Appl., 16(1), 269-288.
[28] Maringwa, J.T., Geys, H., Shkedy, Z., Faes, C., Molenberghs, G., Aerts, M., Ammel, K.V., Teisman, A. & Bijnens, L. (2008). Application of semiparametric mixed models and simultaneous confidence bands in a cardiovascular safety experiment with longitudinal data. J. Biopharm. Stat., 18(6), 1043-1062.
[29] McCulloch, C.E. & Neuhaus, J.M. (2011). Misspecifying the shape of a random effects distribution: why getting it wrong may not matter. Stat. Sci., 26(3), 388-402. · Zbl 1246.62169
[30] Morales, D. & Santamaría, L. (2019). Small area estimation under unit‐level temporal linear mixed models. J. Stat. Comput. Simul., 89(9), 1592-1620. · Zbl 07193799
[31] Morris, C.N. (1983). Parametric empirical Bayes inference: theory and applications. J. Am. Stat. Assoc., 78(381), 47-55. · Zbl 0506.62005
[32] Moura, F.A.S., Neves, A.F. & Britz do N. Silva, D. (2017). Small area models for skewed brazilian business survey data. J. R. Statist. Soc. A, 180(4), 1039-1055.
[33] Prasad, N.G.N. & Rao, J.N.K. (1990). The estimation of the mean squared error of small‐area estimators. J. Am. Stat. Assoc., 85(409), 163-171. · Zbl 0719.62064
[34] Pratesi, M. & Salvati, N. (2008). Small area estimation: the EBLUP estimator based on spatially correlated random area effects. Stat. Methods Appl., 17(1), 113-141. · Zbl 1367.62226
[35] Rao, J.N.K. & Molina, I. (2015). Small area estimation. John Wiley & Sons. · Zbl 1323.62002
[36] Reluga, K. (2020). Simultaneous and post‐selection inference for mixed parameters. Ph.D. Thesis, University of Geneva, Switzerland.
[37] Reluga, K., Lombarda, M.‐J. & Sperlich, S. (2021). Simultaneous inference for empirical best predictors with a poverty study in small areas. J. Am. Statist. Ass., 2021, 1-33. https://doi.org/10.1080/01621459.2021.1942014 · Zbl 1514.62147 · doi:10.1080/01621459.2021.1942014
[38] Rojas‐Perilla, N., Pannier, S., Schmid, T. & Tzavidis, N. (2020). Data‐driven transformations in small area estimation. J. R. Statist. Soc. A, 183(1), 121-148.
[39] Romano, J.P. & Wolf, M. (2005). Exact and approximate stepdown methods for multiple hypothesis testing. J. Am. Stat. Assoc., 100(469), 94-108. · Zbl 1117.62416
[40] Ruppert, D., Wand, M.P. & Carroll, R.J. (2003). Semiparametric regression. Cambridge University Press. · Zbl 1038.62042
[41] Scheffé, H. (1953). A method for judging all contrasts in the analysis of variance. Biometrika, 40(1‐2), 87-110. · Zbl 0052.15202
[42] Shen, W. & Louis, T.A. (1998). Triple‐goal estimates in two‐stage hierarchical models. J. R. Statist. Soc. B, 60, 455-471. · Zbl 0910.62025
[43] Stoline, M.R. & Ury, H.K. (1979). Tables of the studentized maximum modulus distribution and an application to multiple comparisons among means. Technometrics, 21(1), 87-93. · Zbl 0426.62049
[44] Sun, J. & Loader, C.R. (1994). Simultaneous confidence bands for linear regression and smoothing. Ann. Statist., 22(3), 1328-1345. · Zbl 0817.62057
[45] Sun, J., Raz, J. & Faraway, J.J. (1999). Confidence bands for growth and response curves. Stat. Sin., 61(2), 679-698. · Zbl 0929.62028
[46] Tukey, J.W.1953. The problem of multiple comparisons. Unpublished manuscript.
[47] Tzavidis, N., Zhang, L.‐C., Luna, A., Schmid, T. & Rojas‐Perilla, N. (2018). From start to finish: a framework for the production of small area official statistics. J. R. Statist. Soc. A, 181, 927-979.
[48] Ugarte, M.D., Militino, A.F. & Goicoa, T. (2009). Benchmarked estimates in small areas using linear mixed models with restrictions. Test, 18, 342-364. · Zbl 1203.62021
[49] Verbeke, G. & Molenberghs, G. (2000). Linear mixed models for longitudinal data. Springer. · Zbl 0956.62055
[50] Weyl, H. (1939). On the volume of tubes. Am. J. Math., 61(2), 461-472. · JFM 65.0796.01
[51] Working, H. & Hotelling, H. (1929). Applications of the theory of error to the interpretation of trends. J. Am. Stat. Assoc., 24(165A), 73-85. · JFM 55.0928.04
[52] Yoshimori, M. (2015). Numerical comparison between different empirical prediction intervals under the Fay‐Herriot model. Comm. Statist. Simul. Comput., 44(5), 1158-1170. · Zbl 1328.62185
[53] Yoshimori, M. & Lahiri, P. (2014). A second‐order efficient empirical Bayes confidence interval. Ann. Statist., 42(4), 1233-1261. · Zbl 1297.62019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.