×

Robust fault and icing diagnosis in unmanned aerial vehicles using LPV interval observers. (English) Zbl 1430.93150

Summary: This paper proposes a linear parameter varying (LPV) interval unknown input observer for the robust fault diagnosis of actuator faults and ice accretion in unmanned aerial vehicles (UAVs) described by an uncertain model. The proposed interval observer evaluates the set of values for the state, which are compatible with the nominal fault-free and icing-free operation and can be designed in such a way that some information about the nature of the unknown inputs affecting the system can be obtained, thus allowing the diagnosis to be performed. The proposed strategy has several advantages. First, the LPV paradigm allows taking into account operating point variations. Second, the noise rejection properties are enhanced by the presence of the integral term. Third, the interval estimation property guarantees the absence of false alarms. Linear matrix inequality-based conditions for the analysis/design of these observers are provided in order to guarantee the interval estimation of the state and the boundedness of the estimation. The developed theory is supported by simulation results, obtained with the uncertain model of a Zagi flying wing UAV, which illustrate the strong appeal of the methodology for identifying correctly unexpected changes in the system dynamics due to actuator faults or icing.

MSC:

93C85 Automated systems (robots, etc.) in control theory
93B53 Observers
93B35 Sensitivity (robustness)
93C05 Linear systems in control theory

References:

[1] ZhangY, JiangJ. Bibliographical review on reconfigurable fault‐tolerant control systems. Annu Rev Control. 2008;32:229‐252.
[2] GaoZ, CecatiC, DingSX. A survey of fault diagnosis and fault‐tolerant techniques—Part I: fault diagnosis with model‐based and signal‐based approaches. IEEE Trans Ind Electron. 2015;62(6):3757‐3767.
[3] De PersisC, IsidoriA. A geometric approach to nonlinear fault detection and isolation. IEEE Trans Autom Control. 2001;46:853‐865. · Zbl 1009.93003
[4] KaboréP, WangH. Design of fault diagnosis filters and fault‐tolerant control for a class of nonlinear systems. IEEE Trans Autom Control. 2001;46:1805‐1810. · Zbl 1006.93068
[5] LuP, Van EykerenL, Van KampenE, ChuQP. Selective‐reinitialization multiple‐model adaptive estimation for fault detection and diagnosis. J Guid Control Dyn. 2015;38:1409‐1424.
[6] CaliskanF, HajijevC. A review of in‐flight detection and identification of aircraft icing and reconfigurable control. Prog Aerosp Sci. 2013;60:12‐34.
[7] GentR, DartN, CansdaleJ. Aircraft icing. Phil Trans Royal Soc London Ser A: Math Phys Eng Sci. 2000;358:2873‐2911. · Zbl 0997.76092
[8] RutherfordR, DudmanR. Zoned aircraft de‐icing system and method. US Patent US6237874B1. 1999. http://www.google.com/patents/US6237874
[9] SørensenKL, HellandAS, JohansenTA. Carbon nanomaterial‐based wing temperature control system for in‐flight anti‐icing and de‐icing of unmanned aerial vehicles. Paper presented at: IEEE Aerospace Conference; 2015; Big Sky, MT.
[10] SørensenKL, JohansenTA. Thermodynamics of a carbon nano‐materials based icing protection system for unmanned aerial vehicle. Paper presented at: IEEE Aerospace Conference; 2016; Big Sky, MT.
[11] HajijevC, CaliskanF. Fault Diagnosis and Reconfiguration in Flight Control Systems. New York, NY: Springer Science and Business Media; 2003. · Zbl 1066.93039
[12] CristofaroA, JohansenTA, AguiarAP. Icing detection and identification for unmanned aerial vehicles: multiple model adaptive estimation. In: Proceedings of the European Control Conference (ECC); 2015; Linz, Austria.
[13] SeronMM, JohansenTA, DonáJAD, CristofaroA. Detection and estimation of icing in unmanned aerial vehicles using a bank of unknown input observers. In: Proceedings of the 5th Australian Control Conference (UACC); 2015; Gold Coast, Australia.
[14] SørensenKL, BlankeM, JohansenTA. Diagnosis of wing icing through lift and drag coefficient change detection for small unmanned aircraft. In: Proceedings of the 9th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes; 2015; Paris, France.
[15] WenzA, JohansenTA. Icing detection for small fixed wing UAVs using inflight aerodynamic coefficient estimation. In: Proceedings of the IEEE Conference on Control and Applications (CCA); 2016; Buenos Aires, Argentina.
[16] ArmaniniSF, PolakM, GantreyIE, LucasA, WhidborneJF. Decision‐making for unmanned aerial vehicle operation in icing conditions. CEAS Aeronaut J. 2016;7(4):663‐675.
[17] HammouriH, TmarZ. Unknown input observer for state affine systems: a necessary and sufficient condition. Automatica. 2010;46:271‐278. · Zbl 1205.93025
[18] ChenJ, PattonRJ, ZhangHY. Design of unknown input observers and robust fault‐detection filters. Int J Control. 1996;63(1):85‐105. · Zbl 0844.93020
[19] CristofaroA, JohansenTA. Fault tolerant control allocation using unknown input observers. Automatica. 2014;50:1891‐1897. · Zbl 1296.93045
[20] TousiMM, KhorasaniK. Robust observer‐based fault diagnosis for an unmanned aerial vehicle. In: Proceedings of the IEEE International Systems Conference (SysCon); 2011; Montreal, Canada.
[21] CristofaroA, JohansenTA. An unknown input observer approach to icing detection for unmanned aerial vehicles with linearized longitudinal motion. In: Proceedings of the American Control Conference (ACC); 2015; Chicago, IL.
[22] CristofaroA, JohansenTA. An unknown input observer based control allocation scheme for icing diagnosis and accommodation in overactuated UAVs. In: Proceedings of the European Control Conference (ECC); 2016; Aalborg, Denmark.
[23] RotondoD, CristofaroA, JohansenTA, NejjariF, PuigV. Icing detection in unmanned aerial vehicles with longitudinal motion using an LPV unknown input observer. In: Proceedings of the 9th IEEE Multiconference on Systems and Control; 2015; Sydney, Australia.
[24] RotondoD, CristofaroA, JohansenTA, NejjariF, PuigV. Detection of icing and actuator faults in the longitudinal dynamics of small UAVs using an LPV proportional integral unknown input observer. In: Proceedings of the 3rd Conference on Control and Fault‐Tolerant Systems (SysTol); 2016; Barcelona, Spain.
[25] ChebotarevS, EfimovD, RaïssiT, ZolghadriA. On interval observer design for a class of continuous‐time LPV systems. In: Proceedings of the 9th IFAC Symposium on Nonlinear Control Systems; 2013; Toulouse, France.
[26] EfimovD, RaïssiT, PerruquettiW, ZolghadriA. Estimation and control of discrete‐time LPV systems using interval observers. In: Proceedings of the IEEE 52nd Annual Conference on Decision and Control (CDC); 2013; Florence, Italy.
[27] WangY, BevlyDM, RajamaniR. Interval observer design for LPV systems with parametric uncertainty. Automatica. 2015;60:79‐85. · Zbl 1331.93033
[28] GouzéJL, RapaportA, Hadj‐SadokMZ. Interval observers for uncertain biological systems. Ecol Model. 2000;133:46‐56.
[29] SimonD. Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches. Hoboken, NJ: John Wiley and Sons; 2006.
[30] RakaS, CombastelC. Fault detection based on robust adaptive thresholds: a dynamic interval approach. Annu Rev Control. 2013;37(1):119‐128.
[31] OlivierB, GouzèJ. Closed loop observers bundle for uncertain biotechnological models. J Process Control. 2004;14(7):765‐774.
[32] MoisanM, BernardO, GouzèJ. Near optimal interval observers bundle for uncertain bio‐reactors. Automatica. 2009;45(1):291‐295. · Zbl 1154.93321
[33] RaïssiT, VideanG, ZolghadriA. Interval observers design for consistency checks of nonlinear continuous‐time systems. Automatica. 2010;46(3):518‐527. · Zbl 1194.93085
[34] RaïssiT, EfimovD, ZolghadriA. Interval state estimation for a class of nonlinear systems. IEEE Trans Autom Control. 2012;57(1):260‐265. · Zbl 1369.93074
[35] RotondoD, CristofaroA, JohansenTA, NejjariF, PuigV. State estimation and decoupling of unknown inputs in uncertain LPV systems using interval observers. Int J Control. 2017;91(8):1944‐1961. · Zbl 1397.93033
[36] PenroseR. A generalized inverse for matrices. Math Proc Camb Philos Soc. 1955;51(3):406‐413. · Zbl 0065.24603
[37] ApkarianP, GahinetP, BeckerG. Self‐scheduled H_∞ control of linear parameter‐varying systems: a design example. Automatica. 1995;31(9):1251‐1261. · Zbl 0825.93169
[38] KoenigD, MammarS. Design of proportional‐integral observers for unknown input descriptor systems. IEEE Trans Autom Control. 2002;47(12):2057‐2062. · Zbl 1364.93091
[39] KoenigD. Unknown input proportional multiple‐integral observer design for linear descriptor systems: application to state and fault estimation. IEEE Trans Autom Control. 2005;50(2):212‐217. · Zbl 1365.93487
[40] YoussefT, ChadliM, KarimiHR, ZelmatM. Design of unknown inputs proportional integral observers for TS fuzzy models. Neurocomputing. 2014;123:156‐165.
[41] FarinaL, RinaldiS. Positive Linear Systems: Theory and Applications. New York, NY: Wiley; 2000. · Zbl 0988.93002
[42] SontagED. Input to state stability: basic concepts and results. In: Nonlinear and Optimal Control Theory. Berlin, Germany:Springer; 2008:163‐220. · Zbl 1175.93001
[43] LöfbergJ. YALMIP: a toolbox for modeling and optimization in MATLAB. In: Proceedings of the Computer Aided Control Systems Design Conference (CACSD); 2004; Taipei, Taiwan.
[44] SturmJF. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim Methods Softw. 1999;11‐12:625‐653. · Zbl 0973.90526
[45] RosaP, BalasGJ, SilvestreC, AthansM. A synthesis method of LTI MIMO robust controllers for uncertain LPV plants. IEEE Trans Autom Control. 2014;59(8):2234‐2240. · Zbl 1360.93246
[46] Montes de OcaS, PuigV, BlesaJ. Robust fault detection based on adaptive threshold generation using interval LPV observers. Int J Adapt Control Signal Process. 2012;26(3):258‐283. · Zbl 1401.93046
[47] ZhongM, DingSX, LamJ, WangH. An LMI approach to design robust fault detection filter for uncertain LTI systems. Automatica. 2003;39(3):543‐550. · Zbl 1036.93061
[48] PuigV, Montes de OcaS, BlesaJ. Adaptive threshold generation in robust fault detection using interval models: time‐domain and frequency‐domain approaches. Int J Adapt Control Signal Process. 2013;27(10):873‐901. · Zbl 1278.93061
[49] BeardRW, McLainTW. Small Unmanned Aircraft: Theory and Practice. Princeton, NJ:Princeton University Press; 2012.
[50] JohansenTA, CristofaroA, SørensenKL, HansenJM, FossenTI. On estimation of wind velocity, angle‐of‐attack and sideslip angle of small UAVs using standard sensors. In: Proceedings of the International Conference on Unmanned Aircraft Systems (ICUAS); 2015; Denver, CO.
[51] KwiatkowskiA, BollMT, WernerH. Automated generation and assessment of affine LPV models. In: Proceedings of the 45th IEEE Conference on Decision and Control; 2006; San Diego, CA.
[52] RotondoD, PuigV, NejjariF, WitczakM. Automated generation and comparison of Takagi‐Sugeno and polytopic quasi‐LPV models. Fuzzy Sets Syst. 2015;277:44‐64. · Zbl 1392.93003
[53] ShammaJ, AthansM. Gain scheduling: potential hazards and possible remedies. IEEE Control Syst Mag. 1992;12:101‐107.
[54] TanW, PackardAK, BalasGJ. Quasi‐LPV modeling and LPV control of a generic missile. In: Proceedings of the American Control Conference; 2000; Chicago, IL.
[55] AndrésM, BalasGJ. Development of linear parameter varying models for aircraft. J Guid Control Dyn. 2004;27(2):218‐228.
[56] ShinJY, BalasGJ, KayaMA. Blending methodology of linear parameter varying control synthesis of f‐16 aircraft system. J Guid Control Dyn. 2002;25(6):1040‐1048.
[57] BraggMB, HutchinsonT, MerretJ, OltmanR, PokhariyalD. Effect of ice accretion on aircraft flight dynamics. In: Proceedings of the 38th AIAA Aerospace Science Meeting and Exhibit; 2000; Reno, NV.
[58] HoblitFM. Gust Loads on Aircraft: Concept and Applications. Washington, DC:American Institute of Aeronautics and Astronautics; 1988.
[59] RotondoD, CristofaroA, GryteK, JohansenTA. LPV model reference control for fixed‐wing UAVs. IFAC‐Pap. 2017;50(1):11559‐11564.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.