×

Examples of non-Noetherian domains inside power series rings. (English) Zbl 1304.13003

Authors’ abstract: Given a power series ring \(R^{*}\) over a Noetherian integral domain \(R\) and an intermediate field \(L\) between \(R\) and the total quotient ring of \(R^{*}\), the integral domain \(A = L \cap R^{*}\) often (but not always) inherits nice properties from \(R^{*}\) such as the Noetherian property. For certain fields \(L\) it is possible to approximate \(A\) using a localization \(B\) of a particular nested union of polynomial rings over \(R\) associated to \(A\); if \(B\) is Noetherian, then \(B = A\). If \(B\) is not Noetherian, we can sometimes identify the prime ideals of \(B\) that are not finitely generated. We have obtained in this way, for each positive integer \(m\), a three-dimensional local unique factorization domain \(B\) such that the maximal ideal of \(B\) is two-generated, \(B\) has precisely \(m\) prime ideals of height 2, each prime ideal of \(B\) of height 2 is not finitely generated and all the other prime ideals of \(B\) are finitely generated. We examine the structure of the map \(\mathrm{Spec} A\rightarrow \mathrm{Spec}B\) for this example. We also present a generalization of this example to dimension four. This four-dimensional, non-Noetherian local unique factorization domain has exactly one prime ideal \(Q\) of height three, and \(Q\) is not finitely generated.

MSC:

13A15 Ideals and multiplicative ideal theory in commutative rings
13B35 Completion of commutative rings
13J10 Complete rings, completion

References:

[1] S.S. Abhyankar, On the valuations centered in a local domain , Amer. J. Math. 78 (1956), 321-348. · Zbl 0074.26301 · doi:10.2307/2372519
[2] M. Atiyah and I. Macdonald, Introduction to commutative algebra , Addison-Wesley, London, 1969. · Zbl 0175.03601
[3] J.W. Brewer and E.A. Rutter, \(D+M\) constructions with general overrings , Michigan Math. J. 23 (1976), 33-42. · Zbl 0318.13007 · doi:10.1307/mmj/1029001619
[4] I.S. Cohen, On the structure and ideal theory of complete local rings , Trans. Amer. Math. Soc. 59 (1946), 54-106. · Zbl 0060.07001 · doi:10.2307/1990313
[5] J. David, A characteristic zero non-Noetherian factorial ring of dimension three , Trans. Amer. Math Soc. 180 (1973), 315-325. · Zbl 0278.13011 · doi:10.2307/1996667
[6] E. Evans, A generalization of Zariski’s main theorem , Proc. Amer. Math. Soc. 26 (1970), 45-48. · Zbl 0198.06001 · doi:10.2307/2036800
[7] S. Gabelli and E. Houston, Coherentlike conditions in pullbacks , Michigan Math. J. 44 (1997), 99-123. · Zbl 0896.13007 · doi:10.1307/mmj/1029005623
[8] R. Gilmer, Prüfer-like conditions on the set of overrings of an integral domain , Lect. Notes Math. 311 , Springer, Berlin, 1973. · Zbl 0248.13004
[9] —, Multiplicative ideal theory , Queen’s Papers Pure Appl. Math. 90 , Queen’s University, Kingston, ON, 1992.
[10] A. Grothendieck, Élement de Géométrie Algébrique IV, Publ. Math. Inst. Haut. Étud. Sci. 24 , 1965.
[11] W. Heinzer and M. Roitman, The homogeneous spectrum of a graded commutative ring , Proc. Amer. Math. Soc. 130 (2001), 1573-1580. · Zbl 1039.13010 · doi:10.1090/S0002-9939-01-06231-1
[12] W. Heinzer, C. Rotthaus and S. Wiegand, Building Noetherian domains inside an ideal-adic completion II, in Advances in commutative ring theory Lect. Notes Pure Appl. Math. 205 , Dekker, New York, 1999. · Zbl 0959.13009
[13] —, Noetherian rings between a semilocal domain and its completion , J. Algebra 198 (1997), 627-655. · Zbl 0924.13009 · doi:10.1006/jabr.1997.7169
[14] —, Building Noetherian domains inside an ideal-adic completion , in Abelian groups, module theory, and topology , Dikran Dikranjan and Luigi Salce, eds., Lect. Notes Pure Appl. Math. 201 , Dekker, New York, 1998. · Zbl 0913.13008
[15] —, Noetherian domains inside a homomorphic image of a completion , J. Alg. 215 (1999), 666-681. · Zbl 0944.13009 · doi:10.1006/jabr.1998.7763
[16] —, Examples of integral domains inside power series rings , in Commutative rings and applications , Lect. Notes Pure Appl. Math. 231 , Dekker, New York, 2003. · Zbl 1063.13013
[17] —, Non-finitely generated prime ideals in subrings of power series rings , in Rings, modules, algebras, and abelian groups , Lect. Notes Pure Appl. Math. 236 , Dekker, New York, 2004.
[18] —, Power series over Noetherian rings , in progress.
[19] W. Heinzer and J. Sally, Extensions of valuations to the completion of a local domain , J. Pure Appl. Alg. 71 (1991), 175-185. · Zbl 0742.13012 · doi:10.1016/0022-4049(91)90146-S
[20] I. Kaplansky, Commutative rings , Allyn Bacon, Boston, 1970. · Zbl 0203.34601
[21] G. Leuschke and R. Wiegand, Cohen-Macaulay representations , Math. Surv. Mono. 181 , American Mathematical Society, Providence, RI, 2012. · Zbl 1252.13001
[22] H. Matsumura, Commutative ring theory , Cambridge University Press, Cambridge, 1989. · Zbl 0666.13002
[23] —, Commutative algebra , second edition, Benjamin, New York, 1980. · Zbl 0441.13001
[24] M. Nagata, Local rings , John Wiley & Sons, New York, 1962. · Zbl 0123.03402
[25] C. Peskine, Une généralsation du “main theorem” de Zariski , Bull. Sci. Math. 90 (1966), 377-408. · Zbl 0142.28702
[26] C. Rotthaus, Nicht ausgezeichnete, universell japanische Ringe , Math. Z. 152 (1977), 107-125. · Zbl 0333.13005 · doi:10.1007/BF01214184
[27] C. Rotthaus and L. Sega, On a class of coherent regular rings , Proc. Amer. Math. Soc. 135 (2007), 1631-1640. · Zbl 1115.13023 · doi:10.1090/S0002-9939-06-08679-5
[28] P. Samuel, Unique factorization domains , Tata Institute of Fundamental Research, Bombay, 1964.
[29] P. Valabrega, On two-dimensional regular local rings and a lifting problem , Ann. Scuola Norm. Sup. Pisa 27 (1973), 1-21. · Zbl 0301.13010
[30] O. Zariski and P. Samuel, Commutative algebra II, Van Nostrand, Princeton, 1960. \noindentstyle · Zbl 0121.27801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.