×

Toroidal integer homology three-spheres have irreducible \(SU(2)\)-representations. (English) Zbl 1530.57029

The article under discussion is motivated by Problem 3.105(A) of Kirby’s problem list [R. Kirby (ed.), AMS/IP Stud. Adv. Math. 2, 35–473 (1997; Zbl 0888.57014)]. This problem is equivalent to the statement that the fundamental groups of all integer homology three-spheres other than \(S^3\) admit irreducible \(\mathrm{SU}(2)\)-representations.
The authors give an affirmative answer to this problem in the case where the integer homology three-sphere contains an embedded incompressible torus. As an corollary they obtain that the fundamental group of every integer homology three-sphere other than \(S^3\) has an irreducible representation into \(\mathrm{SL}(2,\mathbb{C})\). This simplifies the original proof of R. Zentner [Duke Math. J. 167, No. 9, 1643–1712 (2018; Zbl 1407.57008)].

MSC:

57R58 Floer homology
57M05 Fundamental group, presentations, free differential calculus

References:

[1] J. A.Baldwin and S.Sivek, Stein fillings and \(\rm SU(2)\) representations, Geom. Topol.22 (2018), no. 7, 4307-4380. · Zbl 1407.57019
[2] J.Bochnak, M.Coste, and M.‐F.Roy, Géométrie algébrique réelle, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 12 [Results in Mathematics and Related Areas (3)], Springer, Berlin, 1987. · Zbl 0633.14016
[3] M.Boileau and S.Boyer, Graph manifold \(\mathbb{Z} \)‐homology 3‐spheres and taut foliations, J. Topol.8 (2015), no. 2, 571-585. · Zbl 1330.57005
[4] F.Bonahon and L. C.Siebenmann, The characteristic toric splitting of irreducible compact 3‐orbifolds, Math. Ann.278 (1987), no. 1-4, 441-479. · Zbl 0629.57007
[5] S.Boyer and A.Nicas, Varieties of group representations and Casson’s invariant for rational homology 3‐spheres, Trans. Amer. Math. Soc.322 (1990), no. 2, 507-522. · Zbl 0707.57009
[6] P. J.Braam and S. K.Donaldson, Floer’s work on instanton homology, and knots and surgery, The Floer memorial volume, Progr. Math., vol. 133, Birkhäuser, Basel, 1995, pp. 195-256. · Zbl 0996.57516
[7] J.Conway and B.Tosun, Mazur‐type manifolds with \(L\)‐space boundary, Math. Res. Lett.27 (2020), no. 1, 35-42. · Zbl 1441.57021
[8] C.Cornwell, L.Ng, and S.Sivek, Obstructions to Lagrangian concordance, Algebr. Geom. Topol.16 (2016), no. 2, 797-824. · Zbl 1346.57009
[9] M.Culler, Lifting representations to covering groups, Adv. in Math.59 (1986), no. 1, 64-70. · Zbl 0582.57001
[10] S. K.Donaldson, Floer homology groups in Yang‐Mills theory, Cambridge Tracts in Mathematics, vol. 147, Cambridge University Press, Cambridge, 2002. With the assistance of M. Furuta and D. Kotschick. · Zbl 0998.53057
[11] E.Eftekhary, Bordered Floer homology and existence of incompressible tori in homology spheres, Compos. Math.154 (2018), no. 6, 1222-1268. · Zbl 1436.57017
[12] Y.Eliashberg, Topological characterization of Stein manifolds of dimension \(>2\), Internat. J. Math.1 (1990), no. 1, 29-46. · Zbl 0699.58002
[13] R.Fintushel and R. J.Stern, Instanton homology of Seifert fibred homology three spheres, Proc. London Math. Soc. (3)61 (1990), no. 1, 109-137. · Zbl 0705.57009
[14] A.Floer, An instanton‐invariant for 3‐manifolds, Comm. Math. Phys.118 (1988), no. 2, 215-240. · Zbl 0684.53027
[15] A.Floer, Instanton homology and Dehn surgery, The Floer memorial volume, Progr. Math., vol. 133, Birkhäuser, Basel, 1995, pp. 77-97. · Zbl 0996.57515
[16] S.Fukuhara and N.Maruyama, A sum formula for Casson’s \(\lambda \)‐invariant, Tokyo J. Math.11 (1988), no. 2, 281-287. · Zbl 0675.57008
[17] C. M.Gordon, Dehn surgery and satellite knots, Trans. Amer. Math. Soc.275 (1983), no. 2, 687-708. · Zbl 0519.57005
[18] J.Hempel, Residual finiteness for 3‐manifolds, Combinatorial group theory and topology (Alta, Utah, 1984), Ann. of Math. Stud., vol. 111, Princeton University Press, Princeton, NJ, 1987, pp. 379-396. · Zbl 0772.57002
[19] R.Kirby, Problems in low‐dimensional topology, 1995. https://math.berkeley.edu/ kirby/problems.ps.gz
[20] P. B.Kronheimer and T. S.Mrowka, Dehn surgery, the fundamental group and SU(2), Math. Res. Lett.11 (2004), no. 5-6, 741-754. · Zbl 1084.57006
[21] P. B.Kronheimer and T. S.Mrowka, Witten’s conjecture and property P, Geom. Topol.8 (2004), 295-310. · Zbl 1072.57005
[22] P.Kronheimer and T.Mrowka, Knots, sutures, and excision, J. Differential Geom.84 (2010), no. 2, 301-364. · Zbl 1208.57008
[23] P. B.Kronheimer and T. S.Mrowka, Knot homology groups from instantons, J. Topol.4 (2011), no. 4, 835-918. · Zbl 1302.57064
[24] C.Livingston and P.Melvin, Abelian invariants of satellite knots, Geometry and topology (College Park, Md., 1983/84), Lecture Notes in Mathematics, vol. 1167, Springer, Berlin, 1985, pp. 217-227. · Zbl 0605.57001
[25] A.Lubotzky and A. R.Magid, Varieties of representations of finitely generated groups, Mem. Amer. Math. Soc.58 (1985), no. 336, xi+117. · Zbl 0598.14042
[26] K.Motegi, Haken manifolds and representations of their fundamental groups in \({\rm SL}(2,{\bf C})\), Topology Appl.29 (1988), no. 3, 207-212. · Zbl 0647.57007
[27] Y.Ni, Nonseparating spheres and twisted Heegaard Floer homology, Algebr. Geom. Topol.13 (2013), no. 2, 1143-1159. · Zbl 1352.57022
[28] G.Perelman, The entropy formula for the Ricci flow and its geometric applications, 2002. · Zbl 1130.53001
[29] G.Perelman, Finite extinction time for the solutions to the Ricci flow on certain three‐manifolds, 2003. · Zbl 1130.53003
[30] G.Perelman, Ricci flow with surgery on three‐manifolds, 2003. · Zbl 1130.53002
[31] H.Seifert, On the homology invariants of knots, Quart. J. Math. Oxford Ser. (2)1 (1950), 23-32. · Zbl 0035.11103
[32] S.Sivek and R.Zentner, A menagerie of \(SU(2)\)‐cyclic 3‐manifolds, Int. Math. Res. Not.2022 (2022), no. 11, 8038-8085. · Zbl 1504.57027
[33] A.Weil, Remarks on the cohomology of groups, Ann. of Math. (2)80 (1964), 149-157. · Zbl 0192.12802
[34] S.‐T.Yau and W. H.Meeks, III, The equivariant loop theorem for three‐dimensional manifolds and a review of the existence theorems for minimal surfaces, The Smith conjecture (New York, 1979), volume 112 of Pure Appl. Math., Academic Press, Orlando, FL, 1984, pp. 153-163. · Zbl 0599.57005
[35] R.Zentner, A class of knots with simple \(SU(2)\)‐representations, Selecta Math. (N.S.)23 (2017), no. 3, 2219-2242. · Zbl 1398.57020
[36] R.Zentner, Integer homology 3‐spheres admit irreducible representations in \({\rm SL}(2,\mathbb{C})\), Duke Math. J.167 (2018), no. 9, 1643-1712. · Zbl 1407.57008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.