×

A variational mixed Torelli theorem. (English) Zbl 0831.14002

The Torelli problem for a family of varieties deals with the question of whether the period map from the base space of this family to a period matrix space is injective. Strong Torelli-type theorems have been proved using the infinitesimal variation of Hodge structure (IVHS) techniques of J. A. Carlson and P. A. Griffiths [in Journées géométrie algébrique, Angers 1979, 51-76 (1980; Zbl 0479.14007)] and of J. Carlson, M. Green, P. Griffiths and J. Harris [Compos. Math. 50, 109-205 (1983; Zbl 0531.14006)]. The idea is to prove a generic Torelli theorem which states that the period map for the varieties in question has degree 1 onto its image. A result of D. Cox, R. Donagi, and L. Tu [Invent. Math. 88, 439-446 (1987; Zbl 0606.14005)] allows us to reduce it to the variational Torelli problem. In a Torelli problem, one seeks to recover a variety from the algebraic data of its period map, but in a variational Torelli problem, the algebraic data comprise not only the period map but also its derivative.
By adapting R. Donagi’s symmetrizer technique [Compos. Math. 50, 325-353 (1983; Zbl 0598.14007)] as used by M. L. Green [ibid. 55, 135-156 (1985; Zbl 0588.14004)] and by applying a new way of recovering the variety in question from its IVHS, we show in this article a variational mixed Torelli theorem.

MSC:

14C34 Torelli problem
14D07 Variation of Hodge structures (algebro-geometric aspects)
Full Text: DOI

References:

[1] M. F. Atiyah, Complex analytic connections in fibre bundles , Trans. Amer. Math. Soc. 85 (1957), 181-207. JSTOR: · Zbl 0078.16002 · doi:10.2307/1992969
[2] D. Cox, R. Donagi, and L. Tu, Variational Torelli implies generic Torelli , Invent. Math. 88 (1987), no. 2, 439-446. · Zbl 0594.14011 · doi:10.1007/BF01388918
[3] J. A. Carlson and P. A. Griffiths, Infinitesimal variations of Hodge structure and the global Torelli problem , Journées de Géometrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, Sijthoff & Noordhoff, Alphen aan den Rijn, 1980, pp. 51-76. · Zbl 0479.14007
[4] J. Carlson, M. Green, P. Griffiths, and J. Harris, Infinitesimal variations of Hodge structure. I , Compositio Math. 50 (1983), no. 2-3, 109-205. · Zbl 0531.14006
[5] R. Donagi, Generic Torelli for projective hypersurfaces , Compositio Math. 50 (1983), no. 2-3, 325-353. · Zbl 0598.14007
[6] M. L. Green, The period map for hypersurface sections of high degree of an arbitrary variety , Compositio Math. 55 (1985), no. 2, 135-156. · Zbl 0588.14004
[7] P. Griffiths, 1983, Letter to E. Viehweg.
[8] K. Ivinskis, Torellisätz für zyklische Überlagerungen , dissertation, preprint 90-24, Max-Planck Institüt für Mathematik, Bonn, 1990.
[9] K. Ivinskis, A variational Torelli theorem for cyclic coverings of high degree , Compositio Math. 85 (1993), no. 2, 201-228. · Zbl 0812.14005
[10] D. Mumford, Varieties defined by quadratic equations , Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969), Edizioni Cremonese, Rome, 1970, pp. 29-100. · Zbl 0198.25801
[11] C. Peters, The local Torelli theorem. I. Complete intersections , Math. Ann. 217 (1975), no. 1, 1-16. · Zbl 0293.14004 · doi:10.1007/BF01363236
[12] M.-H. Saito, Y. Shimizu, and S. Usui, Variation of mixed Hodge structure and the Torelli problem , Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 649-693. · Zbl 0643.14005
[13] S. Usui, Variation of mixed Hodge structures arising from family of logarithmic deformations , Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 1, 91-107. · Zbl 0516.14006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.