×

Analytic result for the two-loop six-point NMHV amplitude in \(\mathcal{N} = {4}\) super Yang-Mills theory. (English) Zbl 1306.81093

Summary: We provide a simple analytic formula for the two-loop six-point ratio function of planar \(\mathcal{N} = {4}\) super Yang-Mills theory. This result extends the analytic knowledge of multi-loop six-point amplitudes beyond those with maximal helicity violation. We make a natural ansatz for the symbols of the relevant functions appearing in the two-loop amplitude, and impose various consistency conditions, including symmetry, the absence of spurious poles, the correct collinear behavior, and agreement with the operator product expansion for light-like (super) Wilson loops. This information reduces the ansatz to a small number of relatively simple functions. In order to fix these parameters uniquely, we utilize an explicit representation of the amplitude in terms of loop integrals that can be evaluated analytically in various kinematic limits. The final compact analytic result is expressed in terms of classical polylogarithms, whose arguments are rational functions of the dual conformal cross-ratios, plus precisely two functions that are not of this type. One of the functions, the loop integral \(\Omega^{(2)}\), also plays a key role in a new representation of the remainder function \( {\operatorname{R}}_6^{{(2)}}\) in the maximally helicity violating sector. Another interesting feature at two loops is the appearance of a new \(\text{(parity odd)} \times \text{(parity odd)}\) sector of the amplitude, which is absent at one loop, and which is uniquely determined in a natural way in terms of the more familiar \(\text{(parity even)} \times \text{(parity even)}\) part. The second non-polylogarithmic function, the loop integral \(\widetilde{\Omega}^{(2)}\), characterizes this sector. Both \(\Omega^{(2)}\) and \(\widetilde{\Omega}^{(2)}\) can be expressed as one-dimensional integrals over classical polylogarithms with rational arguments.

MSC:

81T13 Yang-Mills and other gauge theories in quantum field theory
81T60 Supersymmetric field theories in quantum mechanics
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
81T18 Feynman diagrams
11G55 Polylogarithms and relations with \(K\)-theory

Software:

HPL

References:

[1] J. Drummond, J. Henn, V. Smirnov and E. Sokatchev, Magic identities for conformal four-point integrals, JHEP01 (2007) 064 [hep-th/0607160] [INSPIRE]. · doi:10.1088/1126-6708/2007/01/064
[2] Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower and V.A. Smirnov, The four-loop planar amplitude and cusp anomalous dimension in maximally supersymmetric Yang-Mills theory, Phys. Rev. D 75 (2007) 085010 [hep-th/0610248] [INSPIRE].
[3] J. Drummond, G. Korchemsky and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385 [arXiv:0707.0243] [INSPIRE]. · Zbl 1219.81227 · doi:10.1016/j.nuclphysb.2007.11.041
[4] J. Drummond, J. Henn, G. Korchemsky and E. Sokatchev, On planar gluon amplitudes/Wilson loops duality, Nucl. Phys. B 795 (2008) 52 [arXiv:0709.2368] [INSPIRE]. · Zbl 1219.81191 · doi:10.1016/j.nuclphysb.2007.11.007
[5] J. Drummond, J. Henn, G. Korchemsky and E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys. B 826 (2010) 337 [arXiv:0712.1223] [INSPIRE]. · Zbl 1203.81175 · doi:10.1016/j.nuclphysb.2009.10.013
[6] L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP06 (2007) 064 [arXiv:0705.0303] [INSPIRE]. · doi:10.1088/1126-6708/2007/06/064
[7] L.F. Alday and J. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT, JHEP11 (2007) 068 [arXiv:0710.1060] [INSPIRE]. · Zbl 1245.81256 · doi:10.1088/1126-6708/2007/11/068
[8] A. Brandhuber, P. Heslop and G. Travaglini, MHV amplitudes in \(\mathcal{N} = {4}\) super Yang-Mills and Wilson loops, Nucl. Phys. B 794 (2008) 231 [arXiv:0707.1153] [INSPIRE]. · Zbl 1273.81201 · doi:10.1016/j.nuclphysb.2007.11.002
[9] J. Drummond, J. Henn, G. Korchemsky and E. Sokatchev, The hexagon Wilson loop and the BDS ansatz for the six-gluon amplitude, Phys. Lett. B 662 (2008) 456 [arXiv:0712.4138] [INSPIRE]. · Zbl 1282.81129
[10] Z. Bern et al., The two-loop six-gluon MHV amplitude in maximally supersymmetric Yang-Mills theory, Phys. Rev. D 78 (2008) 045007 [arXiv:0803.1465] [INSPIRE].
[11] J. Drummond, J. Henn, G. Korchemsky and E. Sokatchev, Hexagon Wilson loop = six-gluon MHV amplitude, Nucl. Phys. B 815 (2009) 142 [arXiv:0803.1466] [INSPIRE]. · Zbl 1194.81316 · doi:10.1016/j.nuclphysb.2009.02.015
[12] Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001 [hep-th/0505205] [INSPIRE].
[13] J. Bartels, L. Lipatov and A. Sabio Vera, BFKL Pomeron, Reggeized gluons and Bern-Dixon-Smirnov amplitudes, Phys. Rev. D 80 (2009) 045002 [arXiv:0802.2065] [INSPIRE].
[14] V. Del Duca, C. Duhr and V.A. Smirnov, An analytic result for the two-loop hexagon Wilson Loop in \(\mathcal{N} = {4}\) SYM, JHEP 03 (2010) 099 [arXiv:0911.5332] [INSPIRE]. · Zbl 1271.81104 · doi:10.1007/JHEP03(2010)099
[15] V. Del Duca, C. Duhr and V.A. Smirnov, The two-loop hexagon Wilson loop in \(\mathcal{N} = {4}\) SYM, JHEP05 (2010) 084 [arXiv:1003.1702] [INSPIRE]. · Zbl 1287.81080 · doi:10.1007/JHEP05(2010)084
[16] A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical polylogarithms for amplitudes and Wilson loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703] [INSPIRE]. · doi:10.1103/PhysRevLett.105.151605
[17] K.T. Chen, Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977) 831. · Zbl 0389.58001 · doi:10.1090/S0002-9904-1977-14320-6
[18] F. Brown, Multiple zeta values and periods of moduli spaces M0,n, Ann. Sci. École Norm. Sup. (4)42 (2009) 371 [math/0606419]. · Zbl 1216.11079
[19] A.B. Goncharov, A simple construction of Grassmannian polylogarithms, arXiv:0908.2238. · Zbl 1360.11077
[20] J.M. Drummond and J.M. Henn, Simple loop integrals and amplitudes in \(\mathcal{N} = {4}\) SYM, JHEP05 (2011) 105 [arXiv:1008.2965] [INSPIRE]. · Zbl 1296.81058 · doi:10.1007/JHEP05(2011)105
[21] L.F. Alday, J.M. Henn, J. Plefka and T. Schuster, Scattering into the fifth dimension of \(\mathcal{N} = {4}\) super Yang-Mills, JHEP01 (2010) 077 [arXiv:0908.0684] [INSPIRE]. · Zbl 1269.81079 · doi:10.1007/JHEP01(2010)077
[22] L.J. Dixon, J.M. Drummond and J.M. Henn, Bootstrapping the three-loop hexagon, JHEP11 (2011) 023 [arXiv:1108.4461] [INSPIRE]. · Zbl 1306.81092 · doi:10.1007/JHEP11(2011)023
[23] L.F. Alday, D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, An operator product expansion for polygonal null Wilson loops, JHEP04 (2011) 088 [arXiv:1006.2788] [INSPIRE]. · Zbl 1250.81071 · doi:10.1007/JHEP04(2011)088
[24] D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, Bootstrapping null polygon Wilson loops, JHEP03 (2011) 092 [arXiv:1010.5009] [INSPIRE]. · Zbl 1301.81125 · doi:10.1007/JHEP03(2011)092
[25] D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, Pulling the straps of polygons, JHEP12 (2011) 011 [arXiv:1102.0062] [INSPIRE]. · Zbl 1306.81153 · doi:10.1007/JHEP12(2011)011
[26] C. Anastasiou, A. Brandhuber, P. Heslop, V.V. Khoze, B. Spence and G. Travaglini, Two-loop polygon Wilson loops in \(\mathcal{N} = {4}\) SYM, JHEP05 (2009) 115 [arXiv:0902.2245] [INSPIRE]. · doi:10.1088/1126-6708/2009/05/115
[27] A. Brandhuber, P. Heslop, V.V. Khoze and G. Travaglini, Simplicity of polygon Wilson loops in \(\mathcal{N} = {4}\) SYM, JHEP01 (2010) 050 [arXiv:0910.4898] [INSPIRE]. · Zbl 1269.81083 · doi:10.1007/JHEP01(2010)050
[28] C. Vergu, Higher point MHV amplitudes in \(\mathcal{N} = {4}\) supersymmetric Yang-Mills theory, Phys. Rev. D 79 (2009) 125005 [arXiv:0903.3526] [INSPIRE].
[29] N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Local integrals for planar scattering amplitudes, arXiv:1012.6032 [INSPIRE]. · Zbl 1397.81428
[30] S. Caron-Huot, Superconformal symmetry and two-loop amplitudes in planar \(\mathcal{N} = {4}\) super Yang-Mills, arXiv:1105.5606 [INSPIRE]. · Zbl 1306.81082
[31] A. Sever and P. Vieira, Multichannel conformal blocks for polygon Wilson loops, arXiv:1105.5748 [INSPIRE]. · Zbl 1306.81313
[32] V. Del Duca, C. Duhr and V.A. Smirnov, A two-loop octagon Wilson loop in \(\mathcal{N} = {4}\) SYM, JHEP09 (2010) 015 [arXiv:1006.4127] [INSPIRE]. · Zbl 1291.81240 · doi:10.1007/JHEP09(2010)015
[33] P. Heslop and V.V. Khoze, Analytic results for MHV Wilson loops, JHEP11 (2010) 035 [arXiv:1007.1805] [INSPIRE]. · Zbl 1294.81112 · doi:10.1007/JHEP11(2010)035
[34] L.F. Alday, Some analytic results for two-loop scattering amplitudes, JHEP07 (2011) 080 [arXiv:1009.1110] [INSPIRE]. · Zbl 1298.81355 · doi:10.1007/JHEP07(2011)080
[35] P. Heslop and V.V. Khoze, Wilson loops @ 3-loops in special kinematics, JHEP11 (2011) 152 [arXiv:1109.0058] [INSPIRE]. · Zbl 1306.81112 · doi:10.1007/JHEP11(2011)152
[36] J. Drummond, J. Henn, G. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in \(\mathcal{N} = {4}\) super-Yang-Mills theory, Nucl. Phys. B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE]. · Zbl 1203.81112 · doi:10.1016/j.nuclphysb.2009.11.022
[37] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [INSPIRE]. · doi:10.1016/0550-3213(94)00488-Z
[38] Z. Bern, V. Del Duca, L.J. Dixon and D.A. Kosower, All non-maximally-helicity-violating one-loop seven-gluon amplitudes in \(\mathcal{N} = {4}\) super-Yang-Mills theory, Phys. Rev. D 71 (2005) 045006 [hep-th/0410224] [INSPIRE].
[39] Y.-t. Huang, \( \mathcal{N} = {4}\) SYM NMHV loop amplitude in superspace, Phys. Lett. B 631 (2005) 177 [hep-th/0507117] [INSPIRE].
[40] K. Risager, S.J. Bidder and W.B. Perkins, One-loop nMHV amplitudes involving gluinos and scalars in \(\mathcal{N} = {4}\) gauge theory, JHEP10 (2005) 003 [hep-th/0507170] [INSPIRE]. · doi:10.1088/1126-6708/2005/12/003
[41] J. Drummond, J. Henn, G. Korchemsky and E. Sokatchev, Generalized unitarity for \(\mathcal{N} = {4}\) super-amplitudes, arXiv:0808.0491 [INSPIRE]. · Zbl 1262.81195
[42] D. Kosower, R. Roiban and C. Vergu, The six-point NMHV amplitude in maximally supersymmetric Yang-Mills theory, Phys. Rev. D 83 (2011) 065018 [arXiv:1009.1376] [INSPIRE].
[43] J. Drummond and J. Henn, All tree-level amplitudes in \(\mathcal{N} = {4}\) SYM, JHEP04 (2009) 018 [arXiv:0808.2475] [INSPIRE]. · doi:10.1088/1126-6708/2009/04/018
[44] N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, A duality for the S matrix, JHEP03 (2010) 020 [arXiv:0907.5418] [INSPIRE]. · Zbl 1271.81098 · doi:10.1007/JHEP03(2010)020
[45] L. Mason and D. Skinner, Dual superconformal invariance, momentum twistors and Grassmannians, JHEP11 (2009) 045 [arXiv:0909.0250] [INSPIRE]. · doi:10.1088/1126-6708/2009/11/045
[46] N. Arkani-Hamed, F. Cachazo and C. Cheung, The Grassmannian origin of dual superconformal invariance, JHEP03 (2010) 036 [arXiv:0909.0483] [INSPIRE]. · Zbl 1271.81099 · doi:10.1007/JHEP03(2010)036
[47] G. Korchemsky and E. Sokatchev, Superconformal invariants for scattering amplitudes in \(\mathcal{N} = {4}\) SYM theory, Nucl. Phys. B 839 (2010) 377 [arXiv:1002.4625] [INSPIRE]. · Zbl 1206.81114 · doi:10.1016/j.nuclphysb.2010.05.022
[48] J.M. Drummond, J.M. Henn and J. Plefka, Yangian symmetry of scattering amplitudes in \(\mathcal{N} = {4}\) super Yang-Mills theory, JHEP05 (2009) 046 [arXiv:0902.2987] [INSPIRE]. · doi:10.1088/1126-6708/2009/05/046
[49] G. Korchemsky and E. Sokatchev, Symmetries and analytic properties of scattering amplitudes in \(\mathcal{N} = {4}\) SYM theory, Nucl. Phys. B 832 (2010) 1 [arXiv:0906.1737] [INSPIRE]. · Zbl 1204.81127 · doi:10.1016/j.nuclphysb.2010.01.022
[50] L. Mason and D. Skinner, The complete planar S-matrix of \(\mathcal{N} = {4}\) SYM as a Wilson loop in twistor space, JHEP12 (2010) 018 [arXiv:1009.2225] [INSPIRE]. · Zbl 1294.81122 · doi:10.1007/JHEP12(2010)018
[51] S. Caron-Huot, Notes on the scattering amplitude/Wilson loop duality, JHEP07 (2011) 058 [arXiv:1010.1167] [INSPIRE]. · Zbl 1298.81357 · doi:10.1007/JHEP07(2011)058
[52] B. Eden, P. Heslop, G.P. Korchemsky and E. Sokatchev, The super-correlator/super-amplitude duality: Part I, arXiv:1103.3714 [INSPIRE]. · Zbl 1262.81196
[53] B. Eden, P. Heslop, G.P. Korchemsky and E. Sokatchev, The super-correlator/super-amplitude duality: Part II, arXiv:1103.4353 [INSPIRE]. · Zbl 1262.81197
[54] A. Belitsky, G. Korchemsky and E. Sokatchev, Are scattering amplitudes dual to super Wilson loops?, Nucl. Phys. B 855 (2012) 333 [arXiv:1103.3008] [INSPIRE]. · Zbl 1229.81176 · doi:10.1016/j.nuclphysb.2011.10.014
[55] A. Sever, P. Vieira and T. Wang, OPE for super loops, JHEP11 (2011) 051 [arXiv:1108.1575] [INSPIRE]. · Zbl 1306.81362 · doi:10.1007/JHEP11(2011)051
[56] J.M. Henn, S. Moch and S.G. Naculich, Form factors and scattering amplitudes in \(\mathcal{N} = {4}\) SYM in dimensional and massive regularizations, arXiv:1109.5057 [INSPIRE]. · Zbl 1306.81111
[57] N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka, The all-loop integrand for scattering amplitudes in planar \(\mathcal{N} = {4}\) SYM, JHEP01 (2011) 041 [arXiv:1008.2958] [INSPIRE]. · Zbl 1214.81141 · doi:10.1007/JHEP01(2011)041
[58] J.M. Drummond, J.M. Henn and J. Trnka, New differential equations for on-shell loop integrals, JHEP04 (2011) 083 [arXiv:1010.3679] [INSPIRE]. · Zbl 1250.81064 · doi:10.1007/JHEP04(2011)083
[59] L.J. Dixon, J.M. Drummond and J.M. Henn, The one-loop six-dimensional hexagon integral and its relation to MHV amplitudes in \(\mathcal{N} = {4}\) SYM, JHEP06 (2011) 100 [arXiv:1104.2787] [INSPIRE]. · Zbl 1298.81168 · doi:10.1007/JHEP06(2011)100
[60] V. Nair, A current algebra for some gauge theory amplitudes, Phys. Lett. B 214 (1988) 215 [INSPIRE].
[61] G. Georgiou, E. Glover and V.V. Khoze, Non-MHV tree amplitudes in gauge theory, JHEP07 (2004) 048 [hep-th/0407027] [INSPIRE]. · doi:10.1088/1126-6708/2004/07/048
[62] N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the simplest quantum field theory?, JHEP09 (2010) 016 [arXiv:0808.1446] [INSPIRE]. · Zbl 1291.81356 · doi:10.1007/JHEP09(2010)016
[63] A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, arXiv:0905.1473 [INSPIRE]. · Zbl 1342.81291
[64] M.L. Mangano and S.J. Parke, Multiparton amplitudes in gauge theories, Phys. Rept. 200 (1991) 301 [hep-th/0509223] [INSPIRE]. · doi:10.1016/0370-1573(91)90091-Y
[65] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [INSPIRE]. · Zbl 1049.81644 · doi:10.1016/0550-3213(94)90179-1
[66] D.A. Kosower and P. Uwer, One loop splitting amplitudes in gauge theory, Nucl. Phys. B 563 (1999) 477 [hep-ph/9903515] [INSPIRE]. · doi:10.1016/S0550-3213(99)00583-0
[67] V. Del Duca, C. Duhr and V.A. Smirnov, The massless hexagon integral in D = 6 dimensions, Phys. Lett. B 703 (2011) 363 [arXiv:1104.2781] [INSPIRE].
[68] A. Kotikov, L. Lipatov, A. Onishchenko and V. Velizhanin, Three loop universal anomalous dimension of the Wilson operators in \(\mathcal{N} = {4}\) SUSY Yang-Mills model, Phys. Lett. B 595 (2004) 521 [Erratum ibid. B 632 (2006) 754-756] [hep-th/0404092] [INSPIRE]. · Zbl 1247.81485
[69] S. Caron-Huot, private communication.
[70] E. Remiddi and J. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE]. · Zbl 0951.33003
[71] T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE]. · Zbl 1071.81089 · doi:10.1016/S0550-3213(00)00223-6
[72] T. Gehrmann and E. Remiddi, Numerical evaluation of harmonic polylogarithms, Comput. Phys. Commun. 141 (2001) 296 [hep-ph/0107173] [INSPIRE]. · Zbl 0991.65022 · doi:10.1016/S0010-4655(01)00411-8
[73] J.M. Henn, S.G. Naculich, H.J. Schnitzer and M. Spradlin, More loops and legs in Higgs-regulated \(\mathcal{N} = {4}\) SYM amplitudes, JHEP08 (2010) 002 [arXiv:1004.5381] [INSPIRE]. · Zbl 1291.81254 · doi:10.1007/JHEP08(2010)002
[74] I. Korchemskaya and G. Korchemsky, On lightlike Wilson loops, Phys. Lett. B 287 (1992) 169 [INSPIRE].
[75] J.M. Henn, S.G. Naculich, H.J. Schnitzer and M. Spradlin, Higgs-regularized three-loop four-gluon amplitude in \(\mathcal{N} = {4}\) SYM: exponentiation and Regge limits, JHEP04 (2010) 038 [arXiv:1001.1358] [INSPIRE]. · Zbl 1272.81117 · doi:10.1007/JHEP04(2010)038
[76] J.M. Henn, Scattering amplitudes on the Coulomb branch of \(\mathcal{N} = {4}\) super Yang-Mills, Nucl. Phys. Proc. Suppl. 205-206 (2010) 193 [arXiv:1005.2902] [INSPIRE]. · doi:10.1016/j.nuclphysbps.2010.08.042
[77] M. Czakon, Automatized analytic continuation of Mellin-Barnes integrals, Comput. Phys. Commun. 175 (2006) 559 [hep-ph/0511200] [INSPIRE]. · Zbl 1196.81054 · doi:10.1016/j.cpc.2006.07.002
[78] M. Czakon, MBasymptotics.m, http://projects.hepforge.org/mbtools/.
[79] D. Kosower, barnesroutines.m, http://projects.hepforge.org/mbtools/.
[80] T. Gehrmann and E. Remiddi, Two loop master integrals for γ* → 3 jets: the planar topologies, Nucl. Phys. B 601 (2001) 248 [hep-ph/0008287] [INSPIRE]. · doi:10.1016/S0550-3213(01)00057-8
[81] T. Gehrmann and E. Remiddi, Two loop master integrals for γ* → 3 jets: the nonplanar topologies, Nucl. Phys. B 601 (2001) 287 [hep-ph/0101124] [INSPIRE]. · doi:10.1016/S0550-3213(01)00074-8
[82] D. Maître, HPL, a Mathematica implementation of the harmonic polylogarithms, Comput. Phys. Commun. 174 (2006) 222, package can be downloaded at http://krone.physik.unizh.ch/∼maitreda/HPL/ [hep-ph/0507152] [INSPIRE]. · Zbl 1196.68330
[83] V. Smirnov, Feynman integral calculus, Springer Verlag, Heidelberg Germany (2006). · Zbl 1111.81003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.