×

Direct likelihood-based inference for discretely observed stochastic compartmental models of infectious disease. (English) Zbl 1405.62177

Summary: Stochastic compartmental models are important tools for understanding the course of infectious diseases epidemics in populations and in prospective evaluation of intervention policies. However, calculating the likelihood for discretely observed data from even simple models – such as the ubiquitous susceptible-infectious-removed (SIR) model – has been considered computationally intractable, since its formulation almost a century ago. Recently researchers have proposed methods to circumvent this limitation through data augmentation or approximation, but these approaches often suffer from high computational cost or loss of accuracy. We develop the mathematical foundation and an efficient algorithm to compute the likelihood for discretely observed data from a broad class of stochastic compartmental models. We also give expressions for the derivatives of the transition probabilities using the same technique, making possible inference via Hamiltonian Monte Carlo (HMC). We use the 17th century plague in Eyam, a classic example of the SIR model, to compare our recursion method to sequential Monte Carlo, analyze using HMC, and assess the model assumptions. We also apply our direct likelihood evaluation to perform Bayesian inference for the 2014–2015 Ebola outbreak in Guinea. The results suggest that the epidemic infectious rates have decreased since October 2014 in the Southeast region of Guinea, while rates remain the same in other regions, facilitating understanding of the outbreak and the effectiveness of Ebola control interventions.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
92D30 Epidemiology

Software:

abc; pomp; R; Expokit

References:

[1] Abate, J. and Whitt, W. (1992). The Fourier-series method for inverting transforms of probability distributions. Queueing Syst.10 5–87. · Zbl 0749.60013 · doi:10.1007/BF01158520
[2] Althaus, C. L. (2014). Estimating the reproduction number of Ebola virus (EBOV) during the 2014 outbreak in West Africa. PLOS Currents Outbreaks6.
[3] Andrieu, C., Doucet, A. and Holenstein, R. (2010). Particle Markov chain Monte Carlo methods. J. R. Stat. Soc. Ser. B. Stat. Methodol.72 269–342. · Zbl 1184.65001
[4] Arulampalam, M. S., Maskell, S., Gordon, N. and Clapp, T. (2002). A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process.50 174–188.
[5] Becker, N. G. and Britton, T. (1999). Statistical studies of infectious disease incidence. J. R. Stat. Soc. Ser. B. Stat. Methodol.61 287–307. · Zbl 0913.62102 · doi:10.1111/1467-9868.00177
[6] Blum, M. G. and Tran, V. C. (2010). HIV with contact tracing: A case study in approximate Bayesian computation. Biostatistics11 644–660. · Zbl 1437.62399
[7] Brauer, F. (2008). Compartmental models in epidemiology. In Mathematical Epidemiology. Lecture Notes in Math.1945 19–79. Springer, Berlin. · Zbl 1206.92023 · doi:10.1007/978-3-540-78911-6
[8] Cauchemez, S. and Ferguson, N. M. (2008). Likelihood-based estimation of continuous-time epidemic models from time-series data: Application to measles transmission in London. J. R. Soc. Interface5 885–897.
[9] Cox, J. C., Ingersoll, J. E. Jr. and Ross, S. A. (1985). A theory of the term structure of interest rates. Econometrica53 385–407. · Zbl 1274.91447 · doi:10.2307/1911242
[10] Crawford, F. W., Stutz, T. C. and Lange, K. (2016). Coupling bounds for approximating birth-death processes by truncation. Statist. Probab. Lett.109 30–38. · Zbl 1382.60098 · doi:10.1016/j.spl.2015.10.013
[11] Crawford, F. W. and Suchard, M. A. (2012). Transition probabilities for general birth-death processes with applications in ecology, genetics, and evolution. J. Math. Biol.65 553–580. · Zbl 1252.92053 · doi:10.1007/s00285-011-0471-z
[12] Csilléry, K., Blum, M. G., Gaggiotti, O. E. and François, O. (2010). Approximate Bayesian computation (ABC) in practice. Trends Ecol. Evol.25 410–418.
[13] de Donder, T., van den Dungen, F. and van Lerberghe, G. (1920). Leçons de Thermodynamique et de Chimie Physique. Number V. 1 in Leçons de Thermodynamique et de Chimie Physique. Gauthier-Villars, Paris.
[14] Dukic, V., Lopes, H. F. and Polson, N. G. (2012). Tracking epidemics with Google Flu Trends data and a state–space SEIR model. J. Amer. Statist. Assoc.107 1410–1426. · Zbl 1258.62102 · doi:10.1080/01621459.2012.713876
[15] Duong, T. (2007). ks: Kernel density estimation and kernel discriminant analysis for multivariate data in R. J. Stat. Softw.21 (7) 1–16.
[16] Faddy, M. J. (1977). Stochastic compartmental models as approximations to more general stochastic systems with the general stochastic epidemic as an example. Adv. in Appl. Probab.9 448–461. · Zbl 0379.92011 · doi:10.2307/1426108
[17] Feller, W. (1968). An Introduction to Probability Theory and Its Applications. Vol. I, 3rd ed. Wiley, New York. · Zbl 0155.23101
[18] Gibson, G. J. and Renshaw, E. (1998). Estimating parameters in stochastic compartmental models using Markov chain methods. Math. Med. Biol.15 19–40. · Zbl 0916.92024 · doi:10.1093/imammb/15.1.19
[19] Golightly, A. and Wilkinson, D. J. (2005). Bayesian inference for stochastic kinetic models using a diffusion approximation. Biometrics61 781–788. · Zbl 1079.62110 · doi:10.1111/j.1541-0420.2005.00345.x
[20] Ho, L. S. T., Xu, J., Crawford, F. W., Minin, V. N. and Suchard, M. A. (2018). Birth/birth-death processes and their computable transition probabilities with biological applications. J. Math. Biol.76 911–944. · Zbl 1384.60094 · doi:10.1007/s00285-017-1160-3
[21] Ionides, E., Bretó, C. and King, A. (2006). Inference for nonlinear dynamical systems. Proc. Natl. Acad. Sci. USA103 18438–18443.
[22] Karev, G. P., Berezovskaya, F. S. and Koonin, E. V. (2005). Modeling genome evolution with a diffusion approximation of a birth-and-death process. Bioinformatics21 iii12–iii19.
[23] Kermack, W. and McKendrick, A. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London. Series A115 700–721. · JFM 53.0517.01 · doi:10.1098/rspa.1927.0118
[24] King, A. A., Nguyen, D. and Ionides, E. L. (2016). Statistical inference for partially observed Markov processes via the R package pomp. J. Stat. Softw.69 1–43.
[25] Levin, D. (1973). Development of non-linear transformations of improving convergence of sequences. Int. J. Comput. Math.3 371–388. · Zbl 0274.65004 · doi:10.1080/00207167308803075
[26] McKendrick, A. (1926). Applications of mathematics to medical problems. Proceedings of the Edinburgh Mathematics Society44 98–130. · JFM 52.0542.04
[27] Neal, R. M. (2011). MCMC using Hamiltonian dynamics. In Handbook of Markov Chain Monte Carlo. 113–162. CRC Press, Boca Raton, FL. · Zbl 1229.65018
[28] O’Neill, P. D. (2002). A tutorial introduction to Bayesian inference for stochastic epidemic models using Markov chain Monte Carlo methods. Math. Biosci.180 103–114. · Zbl 1021.62094 · doi:10.1016/S0025-5564(02)00109-8
[29] O’Neill, P. D. and Roberts, G. O. (1999). Bayesian inference for partially observed stochastic epidemics. J. Roy. Statist. Soc. Ser. A162 121–129.
[30] O’Neill, P. D. and Wen, C. H. (2012). Modelling and inference for epidemic models featuring non-linear infection pressure. Math. Biosci.238 38–48. · Zbl 1250.92039 · doi:10.1016/j.mbs.2012.03.007
[31] Owen, J., Wilkinson, D. J. and Gillespie, C. S. (2015). Scalable inference for Markov processes with intractable likelihoods. Stat. Comput.25 145–156. · Zbl 1331.62065 · doi:10.1007/s11222-014-9524-7
[32] Raggett, G. (1982). A stochastic model of the Eyam plague. J. Appl. Stat.9 212–225. · Zbl 0498.92018
[33] Renshaw, E. (2011). Stochastic Population Processes: Analysis, Approximations, Simulations. Oxford Univ. Press, Oxford. · Zbl 1303.92001
[34] Reuter, G. E. H. (1957). Denumerable Markov processes and the associated contraction semigroups on \(l\). Acta Math.97 1–46. · Zbl 0079.34703
[35] Robert, C. P., Cornuet, J.-M., Marin, J.-M. and Pillai, N. S. (2011). Lack of confidence in approximate Bayesian computation model choice. Proc. Natl. Acad. Sci. USA108 15112–15117.
[36] Roberts, M., Andreasen, V., Lloyd, A. and Pellis, L. (2015). Nine challenges for deterministic epidemic models. Epidemics10 49–53.
[37] Schranz, H. W., Yap, V. B., Easteal, S., Knight, R. and Huttley, G. A. (2008). Pathological rate matrices: From primates to pathogens. BMC Bioinform.9 550.
[38] Severo, N. C. (1969). Generalizations of some stochastic epidemic models. Math. Biosci.4 395–402. · Zbl 0172.45102 · doi:10.1016/0025-5564(69)90019-4
[39] Sidje, R. B. (1998). Expokit: A software package for computing matrix exponentials. ACM Trans. Math. Software24 130–156. · Zbl 0917.65063 · doi:10.1145/285861.285868
[40] Sunnåker, M., Busetto, A. G., Numminen, E., Corander, J., Foll, M. and Dessimoz, C. (2013). Approximate Bayesian computation. PLoS Comput. Biol.9 e1002803, 10.
[41] Verdinelli, I. and Wasserman, L. (1995). Computing Bayes factors using a generalization of the Savage–Dickey density ratio. J. Amer. Statist. Assoc.90 614–618. · Zbl 0826.62022 · doi:10.1080/01621459.1995.10476554
[42] WHO Ebola Response Team (2014). Ebola virus disease in West Africa—The first 9 months of the epidemic and forward projections. N. Engl. J. Med.371 1481–1495.
[43] WHO Ebola Response Team (2015). West African Ebola epidemic after one year-slowing but not yet under control. N. Engl. J. Med.372 584–587.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.