×

Advection of inertial particles in the presence of the history force: higher order numerical schemes. (English) Zbl 1349.65223

Summary: The equations describing the motion of finite-size particles (inertial particles) contain in their full form the history force. This force is represented by an integral whose accurate numerical evaluation is rather difficult. Here, a systematic way is presented to derive numerical integration schemes of arbitrary order for the advection of inertial particles with the history force. This involves the numerical evaluation of integrals with singular, but integrable, integrands. Explicit specifications of first, second and third order schemes are given and the accuracy and order of the schemes are verified using known analytical solutions.

MSC:

65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
45E05 Integral equations with kernels of Cauchy type
45J05 Integro-ordinary differential equations
65L20 Stability and convergence of numerical methods for ordinary differential equations

References:

[1] Crowe, C.; Schwarzkopf, J.; Sommerfeld, M.; Tsuji, Y., Multiphase Flows with Droplets and Particles (2011), CRC Press
[2] Falkovich, G.; Fouxon, A.; Stepanov, M., Acceleration of rain initiation by cloud turbulence, Nature, 419, 6903, 151-154 (2002)
[3] Bracco, A.; Chavanis, P. H.; Provenzale, A.; Spiegel, E. A., Particle aggregation in a turbulent keplerian flow, Phys. Fluids, 11, 8, 2280-2287 (1999) · Zbl 1147.76336
[4] Zahnow, J. C.; Vilela, R. D.; Feudel, U.; Tél, T., Aggregation and fragmentation dynamics of inertial particles in chaotic flows, Phys. Rev. E, 77, 055301 (2008)
[5] Benczik, I.; Toroczkai, Z.; Tél, T., Selective sensitivity of open chaotic flows on inertial tracer advection: Catching particles with a stick, Phys. Rev. Lett., 89, 16, 164501 (2002)
[6] Tang, W.; Haller, G.; Baik, J.-J.; Ryu, Y.-H., Locating an atmospheric contamination source using slow manifolds, Phys. Fluids, 21, 4, 043302 (2009) · Zbl 1183.76512
[7] Sapsis, T.; Haller, G., Inertial particle dynamics in a hurricane, J. Atmos. Sci., 66, 8, 2481-2492 (2009)
[8] Sapsis, T.; Peng, J.; Haller, G., Instabilities on prey dynamics in jellyfish feeding, Bull. Math. Biol., 73, 8, 1841-1856 (2011) · Zbl 1220.92054
[9] Maxey, M. R.; Riley, J. J., Equation of motion for a small rigid sphere in a nonuniform flow, Phys. Fluids, 26, 4, 883-889 (1983) · Zbl 0538.76031
[10] Auton, T. R.; Hunt, J. C.R.; PrudʼHomme, M., The force exerted on a body in inviscid unsteady non-uniform rotational flow, J. Fluid Mech., 197, 241-257 (1988) · Zbl 0661.76114
[11] Mordant, N.; Pinton, J., Velocity measurement of a settling sphere, Eur. Phys. J. B, 18, 2, 343-352 (2000)
[12] Candelier, F.; Angilella, J. R.; Souhar, M., On the effect of the Boussinesq-Basset force on the radial migration of a Stokes particle in a vortex, Phys. Fluids, 16, 5, 1765-1776 (2004) · Zbl 1186.76090
[13] Armenio, V.; Fiorotto, V., The importance of forces acting on particles in turbulent flows, Phys. Fluids, 13, 24372440 (2001) · Zbl 1184.76034
[14] van Aartrijk, M.; Clercx, H. J.H., Vertical dispersion of light inertial particles in stably stratified turbulence: The influence of the Basset force, Phys. Fluids, 22, 1, 013301 (2010) · Zbl 1183.76536
[15] Daitche, A.; Tél, T., Memory effects are relevant for chaotic advection of inertial particles, Phys. Rev. Lett., 107, 244501 (2011)
[16] Lovalenti, P. M.; Brady, J. F., The hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at small Reynolds number, J. Fluid Mech., 256, 561-605 (1993) · Zbl 0795.76025
[17] Mei, R., Flow due to an oscillating sphere and an expression for unsteady drag on the sphere at finite Reynolds number, J. Fluid Mech., 270, 133-174 (1994) · Zbl 0818.76012
[18] Dorgan, A.; Loth, E., Efficient calculation of the history force at finite Reynolds numbers, Int. J. Multiph. Flow, 33, 833-848 (2007)
[19] Loth, E.; Dorgan, A., An equation of motion for particles of finite Reynolds number and size, Environ. Fluid Mech., 9, 2, 187-206 (2009)
[20] Michaelides, E. E., A novel way of computing the Basset term in unsteady multiphase flow computations, Phys. Fluids A, 4, 1579-1582 (1992) · Zbl 0753.76182
[21] Bombardelli, F.; González, A.; Niño, Y., Computation of the particle Basset force with a fractional-derivative approach, J. Hydraul. Eng., 134, 1513 (2008)
[22] van Hinsberg, M.; ten Thije Boonkkamp, J.; Clercx, H., An efficient, second order method for the approximation of the Basset history force, J. Comput. Phys., 230, 1465-1478 (2011) · Zbl 1391.76593
[23] Maxey, M. R., The equation of motion for a small rigid sphere in a nonuniform or unsteady flow, Gas-Solid Flows, ASME/FED, 166, 57-62 (1993)
[25] Press, W.; Flannery, B.; Teukolsky, S.; Vetterling, W.; Kramer, P., Numerical Recipes: The Art of Scientific Computing (1987), Cambridge University Press
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.