×

Gyroscopic precession and inertial forces in axially symmetric stationary spacetimes. (English) Zbl 0915.53038

Summary: We study the phenomenon of gyroscopic precession and the analogues of inertial forces within the framework of general relativity. Covariant connections between the two are established for circular orbits in stationary spacetimes with axial symmetry. Specializing to static spacetimes, we prove that gyroscopic precession and centrifugal force both reverse at the photon orbits. Simultaneous non-reversal of these in the case of stationary spacetimes is discussed. Further insight is gained in the case of static spacetime by considering the phenomena in a spacetime conformal to the original one. Gravi-electric and gravi-magnetic fields are studied and their relations to inertial forces is established.

MSC:

53Z05 Applications of differential geometry to physics
83C10 Equations of motion in general relativity and gravitational theory

References:

[1] Iyer, B. R., and Vishveshwara, C. V. (1993). Phys. Rev. D48, 5706. · doi:10.1103/PhysRevD.48.5706
[2] Abramowicz, M. A., Nurowski, P., and Wex, N. (1993). Class. Quantum Grav.10, L183. · Zbl 0788.53081 · doi:10.1088/0264-9381/10/10/001
[3] Abramowicz, M. A., and Prasanna, A. R. (1990). Mon. Not. R. Astr. Soc.245, 720.
[4] Prasanna, A. R. (1991). Phys. Rev. D43, 1418. · doi:10.1103/PhysRevD.43.1418
[5] Abramowicz, M. A. (1990). Mon. Not. R. Astron. Soc.245, 733.
[6] Rajesh Nayak, K., and Vishveshwara, C. V. (1997). Gen. Rel. Grav.29, 291. · Zbl 0877.70004 · doi:10.1023/A:1010216801417
[7] Rajesh Nayak, K., and Vishveshwara, C. V. (1996). Class. Quantum Grav.13, 1173. · Zbl 0858.53063 · doi:10.1088/0264-9381/13/7/012
[8] Honig, E., Schücking, E. L., and Vishveshwara, C. V. (1974). J. Math. Phys.15, 774. · doi:10.1063/1.1666728
[9] Greene, R. D., Schücking, E. L., and Vishveshwara, C. V. (1975). J. Math. Phys.16, 153. · doi:10.1063/1.522408
[10] Abramowicz, M. A., Carter, B., and Lasota, J. P. (1988). Gen. Rel. Grav.20, 1173. · Zbl 0658.53072 · doi:10.1007/BF00758937
[11] Abramowicz, M. A., Nurowski, P., and Wex, N. (1995). Class. Quantum Grav.12, 1467. · Zbl 0823.53063 · doi:10.1088/0264-9381/12/6/012
[12] de Felice, F. (1991). Mon. Not. R. Astr. Soc.252, 197. · doi:10.1093/mnras/252.2.197
[13] Semerak, O. (1995). Nuovo Cimento B110, 973. · doi:10.1007/BF02722865
[14] Barrabes, C., Boisseau, B., and Israel, W. (1995). Mon. Not. R. Astr. Soc.276, 432. · doi:10.1093/mnras/276.2.432
[15] Semerak, O. (1996). Class. Quantum Grav.13, 2987. · Zbl 0883.70014 · doi:10.1088/0264-9381/13/11/014
[16] Semerak, O. (1997). Gen. Rel. Grav.29, 153. · Zbl 0890.70004 · doi:10.1023/A:1010231810078
[17] de Felice, F. (1994). Class. Quantum Grav.11, 1283. · doi:10.1088/0264-9381/11/5/014
[18] Bini, D., Carini, P., Jantzen, R. T. (1997). Int. J. Mod. Phys. D6, 1. · Zbl 0942.83012 · doi:10.1142/S0218271897000029
[19] Bini, D., Carini, P., Jantzen, R. T. (1997). Int. J. Mod. Phys. D6, 143. · Zbl 0942.83013 · doi:10.1142/S021827189700011X
[20] Embacher, F. (1984). Found. Phys.14, 721. · doi:10.1007/BF00736618
[21] Thorne, K. S., Price, R. H., Macdonald, D. A., eds. (1986). Black Holes: The Membrane Paradigm(Yale University Press, New Haven). · Zbl 1374.83002
[22] Jantzen, R. T., Carini, P., and Bini, D. (1992). Ann. Phys. (NY)215, 1. · doi:10.1016/0003-4916(92)90297-Y
[23] Ciufolini, I., and Wheeler, J. A. (1995). Gravitation and Inertia(Princeton University Press, Princeton). · Zbl 0828.53069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.