×

Equivalence of Lagrange’s equations for non-material volume and the principle of virtual work in ALE formulation. (English) Zbl 1468.74041

Summary: The Arbitrary Lagrangian-Eulerian (ALE) formulation provides a high-efficiency approach to simulate the moving contact behaviors in mechanical systems using the relative movement between material points and mesh nodes. Two approaches have been widely adopted to obtain the governing equations of ALE elements, namely (i) Lagrange’s equations for non-material volume and (ii) the principle of virtual work. Indeed, consistent numerical results should be obtained through these two approaches; however, their mathematical expressions are quite different at first glance. In this paper, the equivalence of the above-mentioned two approaches demonstrated analytically for a general case and a specific example of three-dimensional two-node ALE cable elements. Additionally, the existence and disappearance conditions for additional terms \({\mathbf{L}}_1\) and \({\mathbf{L}}_2\) of the generalized inertial forces, which distinguish the ALE formulation from the Lagrangian formulation, are explicitly presented. They are physically caused by the material flow through the boundary and mathematically caused by the dependence of the mass matrix \({\mathbf{M}}\) on the material coordinates \(p_1\) and \(p_2\). When no mass is transported through the boundary surface or the kinetic energy of the material points flowing into or out of the control volume is zero, \({\mathbf{L}}_1\) and \({\mathbf{L}}_2\) automatically disappear, and the governing equations degenerate to the classical form of Lagrange’s equations. Finally, an example of preloaded wire rope with variable length is used to verify the above conclusions.

MSC:

74M15 Contact in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Belytschko, T.; Liu, Wk; Moran, B.; Elkhodary, K., Nonlinear Finite Elements for Continua and Structures (2013), Hoboken: Wiley, Hoboken · Zbl 1279.74002
[2] Hong, Df; Ren, Gx, A modeling of sliding joint on one-dimensional flexible medium, Multibody Syst. Dyn., 26, 1, 91-106 (2011) · Zbl 1287.70003 · doi:10.1007/s11044-010-9242-7
[3] Liu, Jp; Cheng, Zb; Ren, Gx, An Arbitrary Lagrangian-Eulerian formulation of a geometrically exact timoshenko beam running through a tube, Acta Mech., 229, 8, 3161-3188 (2018) · Zbl 1396.74082 · doi:10.1007/s00707-018-2161-z
[4] Vetyukov, Y., Non-material finite element modelling of large vibrations of axially moving strings and beams, J. Sound Vib., 414, 299-317 (2018) · doi:10.1016/j.jsv.2017.11.010
[5] Escalona, Jl, An Arbitrary Lagrangian-Eulerian discretization method for modeling and simulation of reeving systems in multibody dynamics, Mech. Mach. Theory, 112, 1-21 (2017) · doi:10.1016/j.mechmachtheory.2017.01.014
[6] Peng, Y.; Zhao, Zh; Zhou, M.; He, Jw; Yang, Jg; Xiao, Y., Flexible multibody model and the dynamics of the deployment of mesh antennas, J. Guid. Control Dyn., 40, 6, 1499-1510 (2017) · doi:10.2514/1.G000361
[7] Qi, Zh; Wang, J.; Wang, G., An efficient model for dynamic analysis and simulation of cable-pulley systems with time-varying cable lengths, Mech. Mach. Theory, 116, 383-403 (2017) · doi:10.1016/j.mechmachtheory.2017.06.009
[8] Hyldahl, P.; Mikkola, A.; Balling, O., A thin plate element based on the combined arbitrary Lagrange-Euler and absolute nodal coordinate formulations, Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn., 227, 3, 211-219 (2013)
[9] Vetyukov, Y.; Gruber, P.; Krommer, M., Nonlinear model of an axially moving plate in a mixed Eulerian-Lagrangian framework, Acta Mech., 227, 10, 2831-2842 (2016) · Zbl 1380.74004 · doi:10.1007/s00707-016-1651-0
[10] Vetyukov, Y.; Gruber, P.; Krommer, M.; Gerstmayr, J.; Gafur, I.; Winter, G., Mixed Eulerian-Lagrangian description in materials processing: deformation of a metal sheet in a rolling mill, Int. J. Numer. Methods Eng., 109, 10, 1371-1390 (2017) · Zbl 1378.74015 · doi:10.1002/nme.5314
[11] Kazemi, O.; Ribaric, Ap; Nikravesh, Pe; Kim, S., Non-rolling mesh for a rolling finite-element tire model, J. Mech. Sci. Technol., 29, 7, 2615-2622 (2015) · doi:10.1007/s12206-015-0506-2
[12] Liu, Jp; Shu, Xb; Kanazawa, H.; Imaoka, K.; Mikkola, A.; Ren, Gx, A model order reduction method for the simulation of gear contacts based on Arbitrary Lagrangian Eulerian formulation, Comput. Methods Appl. Mech. Eng., 338, 68-96 (2018) · Zbl 1440.74247 · doi:10.1016/j.cma.2018.03.039
[13] Liu, J.P., Shu, X.B., Mikkola, A., Ren, G.X.: A model order reduction method for the simulation of rolling bearing based on Arbitrary Lagrangian-Eulerian formulation. In: ECCOMAS Thematic Conference on Multibody Dynamics (2019)
[14] Nackenhorst, U., The ALE-formulation of bodies in rolling contact: theoretical foundations and finite element approach, Comput. Methods Appl. Mech. Eng., 193, 39-41, 4299-4322 (2004) · Zbl 1068.74079 · doi:10.1016/j.cma.2004.01.033
[15] Wollny, I.; Sun, W.; Kaliske, M., A hierarchical sequential ALE poromechanics model for tire-soil-water interaction on fluid-infiltrated roads, Int. J. Numer. Methods Eng., 112, 8, 909-938 (2017) · Zbl 07867237 · doi:10.1002/nme.5537
[16] Pechstein, A.; Gerstmayr, J., A Lagrange-Eulerian formulation of an axially moving beam based on the absolute nodal coordinate formulation, Multibody Syst. Dyn., 30, 3, 343-358 (2013) · Zbl 1274.74156 · doi:10.1007/s11044-013-9350-2
[17] Shen, W., Zhao, Z., Ren, G., Liu, J.: Modeling and simulation of arresting gear system with multibody dynamic approach. Mathematical Problems in Engineering (2013)
[18] Liu, Jw; Liu, Jp; Shu, Xb; Mikkola, A.; Ren, Gx, An efficient multibody dynamic model of three-dimensional meshing contacts in helical gear-shaft system and its solution, Mech. Mach. Theory, 142, 1-25 (2019) · doi:10.1016/j.mechmachtheory.2019.03.010
[19] Chen, Kd; Chen, Jq; Hong, Df; Zhong, Xy; Cheng, Zb; Lu, Qh; Liu, Jp; Zhao, Zh; Ren, Gx, Efficient and high-fidelity steering ability prediction of a slender drilling assembly, Acta Mech., 230, 11, 3963-3988 (2019) · doi:10.1007/s00707-019-02460-5
[20] Irschik, H.; Holl, H., The equations of Lagrange written for a non-material volume, Acta Mech., 153, 3-4, 231-248 (2002) · Zbl 1029.70006 · doi:10.1007/BF01177454
[21] Escalona, Jl; Orzechowski, G.; Mikkola, Am, Flexible multibody modeling of reeving systems including transverse vibrations, Multibody Syst. Dyn., 44, 2, 107-133 (2018) · Zbl 1407.70009 · doi:10.1007/s11044-018-9619-6
[22] Géradin, M.; Cardona, A., Flexible Multibody Dynamics: A Finite Element Approach (2001), Hoboken: Wiley, Hoboken
[23] Yang, C., Cao, D., Zhao, Z., Zhang, Z., Ren, G.: A direct eigen analysis of multibody system in equilibrium. J. Appl. Math. (2012) · Zbl 1235.70031
[24] Schiehlen, W.; Eberhard, P., Applied Dynamics (2014), Berlin: Springer, Berlin · Zbl 1306.70001
[25] Benacquista, Mj; Romano, Jd, Classical Mechanics (2018), Berlin: Springer, Berlin · Zbl 1408.70001
[26] Balazs, Nl, On the solution of the wave equation with moving boundaries, J. Math. Anal. Appl., 3, 3, 472-484 (1961) · Zbl 0133.35703 · doi:10.1016/0022-247X(61)90071-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.