×

Multiple positive solutions of fractional differential equations with improper integral boundary conditions on the half-line. (English) Zbl 1528.34023

The authors investigate the existence of multiple positive solutions of fractional differential equations with integral boundary conditions \[ \begin{cases} D^\beta_{0^+} u(t)+a(t)f(t,u(t),u'(t)=0, \quad t\in \mathbb{R}_+,\\ u(0)=u'(0)=0,\\ \lim_{t\to+\infty}D_{0^+}^{\beta-1}u(t)=\int_0^\infty h(s)u'(s)ds+\sum_{i=1}^{\infty}\eta_i D^{\gamma}_{0^+}u(\xi). \end{cases} \] Here, \(D^\alpha\) is the Riemann-Liouville fractional derivative, \(\beta\in(2,3],\)\(0\in[0,\beta-1]\) and \(0\leq\xi_0\leq\xi_2\leq\ldots\leq\xi_k\leq\xi_{k+1}\ldots<\infty,\)\(\eta_k>0,\ k\in \mathbb{N}.\)
Such multiplicity results for the above problem are deduced by constructing the Green’s function related to the linear fractional problem \[ \begin{cases} D^\beta_{0^+} u(t)+a(t)g(t)=0, \quad t\in \mathbb{R}_+,\\ u(0)=u'(0)=0,\\ \lim_{t\to+\infty}D_{0^+}^{\beta-1}u(t)=\int_0^\infty h(s)u'(s)ds+\sum_{i=1}^{\infty}\eta_i D^{\gamma}_{0^+}u(\xi) \end{cases} \] by proving the positivity and continuity of the Green function and using the R. Avery and A. Peterson, fixed point theorem.
An example illustrating the theoretical result is presented at the end of the paper.

MSC:

34B18 Positive solutions to nonlinear boundary value problems for ordinary differential equations
34A08 Fractional ordinary differential equations
34B27 Green’s functions for ordinary differential equations
34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations
47H10 Fixed-point theorems

References:

[1] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations (2006), New York: Elsevier, New York · Zbl 1092.45003 · doi:10.1016/S0304-0208(06)80001-0
[2] Sabatier, J.; Agrawal, O. P.; Machado, J. T., Advances in Fractional Calculus (2007), Berlin: Springer, Berlin · Zbl 1116.00014 · doi:10.1007/978-1-4020-6042-7
[3] Purohit, S.; Kalla, S., On fractional partial differential equations related to quantum mechanics, J. Phys. A, Math. Theor., 44, 4 (2010) · Zbl 1211.26009 · doi:10.1088/1751-8113/44/4/045202
[4] Kumar, P.; Erturk, V. S.; Yusuf, A.; Kumar, S., Fractional time-delay mathematical modeling of oncolytic virotherapy, Chaos Solitons Fractals, 150 (2021) · doi:10.1016/j.chaos.2021.111123
[5] Abbas, S.; Tyagi, S.; Kumar, P.; Ertürk, V. S.; Momani, S., Stability and bifurcation analysis of a fractional-order model of cell-to-cell spread of HIV-1 with a discrete time delay, Math. Methods Appl. Sci., 45, 11, 7081-7095 (2022) · Zbl 1530.92199 · doi:10.1002/mma.8226
[6] Erturk, V.; Godwe, E.; Baleanu, D.; Kumar, P.; Asad, J.; Jajarmi, A., Novel fractional-order Lagrangian to describe motion of beam on nanowire, Acta Phys. Pol. A, 140, 3 (2021) · doi:10.12693/APhysPolA.140.265
[7] Zhang, X.; Shao, Z.; Zhong, Q., Multiple positive solutions for higher-order fractional integral boundary value problems with singularity on space variable, Fract. Calc. Appl. Anal., 25, 4, 1507-1526 (2022) · Zbl 1503.34037 · doi:10.1007/s13540-022-00073-9
[8] Agarwal, R.; Golev, A.; Hristova, S.; O’Regan, D.; Stefanova, K., Iterative techniques with computer realization for the initial value problem for Caputo fractional differential equations, J. Appl. Math. Comput., 58, 1, 433-467 (2018) · Zbl 1398.34012 · doi:10.1007/s12190-017-1152-x
[9] Li, S.; Zhang, Z.; Jiang, W., Multiple positive solutions for four-point boundary value problem of fractional delay differential equations with p-Laplacian operator, Appl. Numer. Math., 165, 348-356 (2021) · Zbl 07354394 · doi:10.1016/j.apnum.2021.03.001
[10] Chen, Q.; Debbouche, A.; Luo, Z.; Wang, J., Impulsive fractional differential equations with Riemann-Liouville derivative and iterative learning control, Chaos Solitons Fractals, 102, 111-118 (2017) · Zbl 1374.34314 · doi:10.1016/j.chaos.2017.03.024
[11] Shen, X.; Shen, T., Multiplicity of solutions for the Dirichlet boundary value problem to a fractional quasilinear differential model with impulses, Bound. Value Probl., 2022, 1 (2022) · Zbl 1525.34055 · doi:10.1186/s13661-022-01643-9
[12] Meng, F.; Jiang, W.; Liu, Y.; Guo, C., The existence of solutions of integral boundary value problem for Hilfer fractional differential equations with p-Laplacian at resonance, J. Appl. Anal. Comput., 12, 6, 2268-2282 (2022)
[13] Zhang, W.; Liu, W., Existence of solutions for several higher-order Hadamard-type fractional differential equations with integral boundary conditions on infinite interval, Bound. Value Probl., 2018, 1 (2018) · Zbl 1499.34089 · doi:10.1186/s13661-018-1053-4
[14] Senlik Cerdik, T.; Yoruk Deren, F., New results for higher-order Hadamard-type fractional differential equations on the half-line, Math. Methods Appl. Sci., 45, 4, 2315-2330 (2022) · Zbl 1527.34022 · doi:10.1002/mma.7926
[15] Li, X.; Liu, X.; Jia, M.; Zhang, L., The positive solutions of infinite-point boundary value problem of fractional differential equations on the infinite interval, Adv. Differ. Equ., 2017, 1 (2017) · Zbl 1422.34105 · doi:10.1186/s13662-017-1185-3
[16] Wang, Y.; Sun, S., Solvability to infinite-point boundary value problems for singular fractional differential equations on the half-line, J. Appl. Math. Comput., 57, 1, 359-373 (2018) · Zbl 1394.34023 · doi:10.1007/s12190-017-1110-7
[17] Li, X.; Liu, X.; Jia, M.; Li, Y.; Zhang, S., Existence of positive solutions for integral boundary value problems of fractional differential equations on infinite interval, Math. Methods Appl. Sci., 6, 40, 1892-1904 (2017) · Zbl 1366.34010 · doi:10.1002/mma.4106
[18] Zhang, W.; Liu, W., Existence, uniqueness, and multiplicity results on positive solutions for a class of Hadamard-type fractional boundary value problem on an infinite interval, Math. Methods Appl. Sci., 43, 5, 2251-2275 (2020) · Zbl 1452.34017 · doi:10.1002/mma.6038
[19] Wang, G.; Pei, K.; Agarwal, R. P.; Zhang, L.; Ahmad, B., Nonlocal Hadamard fractional boundary value problem with Hadamard integral and discrete boundary conditions on a half-line, J. Comput. Appl. Math., 343, 230-239 (2018) · Zbl 1524.34057 · doi:10.1016/j.cam.2018.04.062
[20] Wang, W.; Liu, X., Properties and unique positive solution for fractional boundary value problem with two parameters on the half-line, J. Appl. Anal. Comput., 11, 5, 2491-2507 (2021) · Zbl 07907287
[21] Zhang, W.; Ni, J., New multiple positive solutions for Hadamard-type fractional differential equations with nonlocal conditions on an infinite interval, Appl. Math. Lett., 118 (2021) · Zbl 1483.34044 · doi:10.1016/j.aml.2021.107165
[22] Bai, Z.; Lü, H., Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., 311, 2, 495-505 (2005) · Zbl 1079.34048 · doi:10.1016/j.jmaa.2005.02.052
[23] Corduneanu, C., Integral Equations and Stability of Feedback Systems (1973), New York: Academic Press, New York · Zbl 0273.45001
[24] Avery, R.; Peterson, A., Three positive fixed points of nonlinear operators on ordered Banach spaces, Comput. Math. Appl., 42, 3-5, 313-322 (2001) · Zbl 1005.47051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.