×

An asymptotic-preserving dynamical low-rank method for the multi-scale multi-dimensional linear transport equation. (English) Zbl 07512318

Summary: We propose a dynamical low-rank method to reduce the computational complexity for solving the multi-scale multi-dimensional linear transport equation. The method is based on a macro-micro decomposition of the equation; the low-rank approximation is only used for the micro part of the solution. The time and spatial discretizations are done properly so that the overall scheme is second-order accurate (in both the fully kinetic and the limit regime) and asymptotic-preserving (AP). That is, in the diffusive regime, the scheme becomes a macroscopic solver for the limiting diffusion equation that automatically captures the low-rank structure of the solution. Moreover, the method can be implemented in a fully explicit way and is thus significantly more efficient compared to the previous state of the art. We demonstrate the accuracy and efficiency of the proposed low-rank method by a number of four-dimensional (two dimensions in physical space and two dimensions in velocity space) simulations.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
65Lxx Numerical methods for ordinary differential equations
82Cxx Time-dependent statistical mechanics (dynamic and nonequilibrium)

References:

[1] SPHERE_LEBEDEV_RULE quadrature rules for the sphere (2019)
[2] Boscarino, S.; Pareschi, L.; Russo, G., Implicit-explicit Runge-Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit, SIAM J. Sci. Comput., 35, A22-A51 (2013) · Zbl 1264.65150
[3] Chandrasekhar, S., Radiative Transfer (1960), Dover Publications · Zbl 0037.43201
[4] Davison, B., Neutron Transport Theory (1973), Oxford University Press: Oxford University Press London · Zbl 0077.22505
[5] Degond, P.; Deluzet, F., Asymptotic-preserving methods and multiscale models for plasma physics, J. Comput. Phys., 336, 429-457 (2017) · Zbl 1375.82108
[6] Ding, Z.; Einkemmer, L.; Li, Q., Dynamical low-rank integrator for the linear Boltzmann equation: error analysis in the diffusion limit (2019)
[7] Einkemmer, L., A low-rank algorithm for weakly compressible flow, SIAM J. Sci. Comput., 41, 5, A2795-A2814 (2019) · Zbl 1421.76169
[8] Einkemmer, L.; Lubich, C., A low-rank projector-splitting integrator for the Vlasov-Poisson equation, SIAM J. Sci. Comput., 40, B1330-B1360 (2018) · Zbl 1408.35187
[9] Einkemmer, L.; Lubich, C., A quasi-conservative dynamical low-rank algorithm for the Vlasov equation, SIAM J. Sci. Comput., 41, 5, B1061-B1081 (2019) · Zbl 1428.82058
[10] Einkemmer, L.; Ostermann, A., An almost symmetric Strang splitting scheme for the construction of high order composition methods, J. Comput. Appl. Math., 271, 307-318 (2014) · Zbl 1321.65109
[11] Einkemmer, L.; Ostermann, A., An almost symmetric Strang splitting scheme for nonlinear evolution equations, Comput. Math. Appl., 67, 12, 2144-2157 (2014) · Zbl 1368.65074
[12] Einkemmer, L.; Ostermann, A.; Piazzola, C., A low-rank projector-splitting integrator for the Vlasov-Maxwell equations with divergence correction, J. Comput. Phys., 403, Article 109063 pp. (2020) · Zbl 1453.65357
[13] Hu, J.; Jin, S.; Li, Q., Asymptotic-preserving schemes for multiscale hyperbolic and kinetic equations, (Abgrall, R.; Shu, C.-W., Handbook of Numerical Methods for Hyperbolic Problems: Applied and Modern Issues (2017), North-Holland), 103-129, chapter 5 · Zbl 1366.82029
[14] Jang, J.; Li, F.; Qiu, J.-M.; Xiong, T., High order asymptotic preserving DG-IMEX schemes for discrete-velocity kinetic equations in a diffusive scaling, J. Comput. Phys., 281, 199-224 (2015) · Zbl 1351.76062
[15] Jin, S., Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations, SIAM J. Sci. Comput., 21, 441-454 (1999) · Zbl 0947.82008
[16] Jin, S., Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review, Riv. Mat. Univ. Parma, 3, 177-216 (2012) · Zbl 1259.82079
[17] Kieri, E.; Lubich, C.; Walach, H., Discretized dynamical low-rank approximation in the presence of small singular values, SIAM J. Numer. Anal., 54, 1020-1038 (2016) · Zbl 1336.65119
[18] Koch, O.; Lubich, C., Dynamical low-rank approximation, SIAM J. Matrix Anal. Appl., 29, 434-454 (2007) · Zbl 1145.65031
[19] Kupper, K.; Frank, M.; Jin, S., An asymptotic preserving two-dimensional staggered grid method for multiscale transport equations, SIAM J. Numer. Anal., 54, 440-461 (2016) · Zbl 1339.82008
[20] Laiu, M.; Frank, M.; Hauck, C., A positive asymptotic-preserving scheme for linear kinetic transport equations, SIAM J. Sci. Comput., 41, A1500-A1526 (2019) · Zbl 1447.65025
[21] Lebedev, V., Quadratures on a sphere, USSR Comput. Math. Math. Phys., 16, 2, 10-24 (1976) · Zbl 0348.65023
[22] Lemou, M.; Mieussens, L., A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit, SIAM J. Sci. Comput., 31, 334-368 (2008) · Zbl 1187.82110
[23] Liu, J.-G.; Mieussens, L., Analysis of an asymptotic preserving scheme for linear kinetic equations in the diffusion limit, SIAM J. Numer. Anal., 48, 1474-1491 (2010) · Zbl 1220.65116
[24] Lubich, C., Time integration in the multiconfiguration time-dependent Hartree method of molecular quantum dynamics, Appl. Math. Res. Express, 2015, 311-328 (2015) · Zbl 1331.35290
[25] Lubich, C.; Oseledets, I. V., A projector-splitting integrator for dynamical low-rank approximation, BIT, 54, 171-188 (2014) · Zbl 1314.65095
[26] Lubich, C.; Oseledets, I. V.; Vandereycken, B., Time integration of tensor trains, SIAM J. Numer. Anal., 53, 2, 917-941 (2015) · Zbl 1312.65114
[27] Lubich, C.; Vandereycken, B.; Walach, H., Time integration of rank-constrained Tucker tensors, SIAM J. Numer. Anal., 56, 3, 1273-1290 (2018) · Zbl 1407.37113
[28] Peng, Z.; McClarren, R.; Frank, M., A low-rank method for two-dimensional time-dependent radiation transport calculations, J. Comput. Phys., 421, Article 109735 pp. (2020) · Zbl 1537.76091
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.