×

Convergence of the kinetic annealing for general potentials. (English) Zbl 1517.60100

The paper is concerned with the kinetic Langevin simulated annealing. The authors study the Markov process \((Z_t)_{t\geq 0} = (X_t, Y_t)_{t\geq0}\) on \(\mathbb{R}^{2d}\) that solves
\(dX_t=dY_t \)
\(dY_t=-\nabla U(X_t)dt-\gamma_t Y_t dt +\sqrt{2\gamma_t \beta_t^{-1}}dB_t \)
where \(\gamma_t:\mathbb{R}_+\rightarrow\mathbb{R}_+\) is a friction parameter. The convergence of the kinetic langevin simulated annealing is proven under mild assumptions on the potential \(U\) for slow logarithmic cooling schedules, which widely extends the scope of the previous results of P. Monmarché [Probab. Theory Relat. Fields 172, No. 3–4, 1215–1248 (2018; Zbl 1404.60120)]. Moreover, non-convergence for fast logarithmic and non-logarithmic cooling schedules is established.

MSC:

60J60 Diffusion processes
60J70 Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.)
46N30 Applications of functional analysis in probability theory and statistics
90C15 Stochastic programming

Citations:

Zbl 1404.60120

References:

[1] A. Arnold and J. Erb, Sharp entropy decay for hypocoercive and non-symmetric Fokker-Planck equations with linear drift, arXiv e-prints (2014), 1409.5425.
[2] D. Bakry, I. Gentil, and M. Ledoux, Analysis and geometry of Markov diffusion operators, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 348, Springer, Cham, 2014. · Zbl 1376.60002
[3] M. Chak, N. Kantas, and G. A. Pavliotis, On the Generalised Langevin Equation for Simulated Annealing, arXiv e-prints (2020), 2003.06448.
[4] T.-S. Chiang, C.-R. Hwang, and S.J. Sheu, Diffusion for global optimization in \[{\mathbb{R}^n} \], SIAM Journal on Control and Optimization 25 (1987), no. 3, 737-753. · Zbl 0622.60093
[5] N. Fournier, P. Monmarché, and C. Tardif, Simulated annealing in \[{\mathbb{R}^d} \]with slowly growing potentials, Stochastic Processes and their Applications 131 (2021), 276-291.
[6] N. Fournier and C. Tardif, On the simulated annealing in \[{\mathbb{R}^n} \], J. Funct. Anal. 281 (2021). · Zbl 1481.60155
[7] B. Hajek, Cooling schedules for optimal annealing, Math. Oper. Res. 13 (1988), no. 2, 311-329. · Zbl 0652.65050
[8] R. A. Holley, S. Kusuoka, and D. W. Stroock, Asymptotics of the spectral gap with applications to the theory of simulated annealing, J. Funct. Anal. 83 (1989), no. 2, 333-347. · Zbl 0706.58075
[9] R. A. Holley and D. W. Stroock, Simulated annealing via Sobolev inequalities, Comm. Math. Phys. 115 (1988), no. 4, 553-569. · Zbl 0643.60092
[10] T. Lelièvre, M. Ramil, and J. Reygner, A probabilistic study of the kinetic Fokker-Planck equation in cylindrical domains, arXiv e-prints (2020), 2010.10157.
[11] L. Miclo, Recuit simulé sur \[{R^n} \]. Étude de l’évolution de l’énergie libre, Ann. Inst. H. Poincaré Probab. Statist. 28 (1992), no. 2, 235-266. · Zbl 0747.60071
[12] L. Miclo, Remarques sur l’ergodicité des algorithmes de recuit simulé sur un graphe, Stochastic Processes and their Applications. 58 (1995), no. 2, 329-360. · Zbl 0829.60024
[13] P. Monmarché, Generalized Γ calculus and application to interacting particles on a graph, Potential Analysis 50 (2019), 439-466. · Zbl 1411.58013
[14] P. Monmarché, Hypocoercivity in metastable settings and kinetic simulated annealing, Probab. Theory Related Fields 172 (2018), no. 3-4, 1215-1248. · Zbl 1404.60120
[15] G. Royer, A remark on simulated annealing of diffusion processes, SIAM J. Control Optim. 27 (1989), no. 6, 1403-1408. · Zbl 0689.60059
[16] D.W. Stroock and S.R.S Varadhan, On the support of diffusion processes with applications to the strong maximum principle, Proc. Sixth Berkeley Symp. Math. Statist. Prob. III (1972), 333-359. · Zbl 0255.60056
[17] C. Villani, Hypocoercivity, Mem. Amer. Math. Soc. 202 (2009), no. 950, iv+141. · Zbl 1197.35004
[18] C. Zhang, Hypocoercivity and global hypoellipticity for the kinetic Fokker-Planck equation in \[{H^k} spaces \], arXiv e-prints (2020), 2012.06253.
[19] P-A. Zitt, Annealing diffusions in a potential function with a slow growth, Stochastic Process. Appl. 118 (2008), no. 1, 76-119. · Zbl 1144.60048
[20] S. Taniguchi, Applications of Malliavin’s calculus to time-dependent systems of heat equations, Osaka J. Math., 22:307-320, 1985. · Zbl 0583.35055
[21] V. I. Bogachev, N. V. Krylov, M. Röckner, and S. V. Shaposhnikov. Fokker-Planck-Kolmogorov equations, volume 207 of Math. Surv. Monogr. Providence, RI: American Mathematical Society (AMS), 2015. · Zbl 1342.35002
[22] R. Höpfner, E. Löcherbach, and M. Thieullen. Strongly degenerate time inhomogeneous SDEs: Densities and support properties. Application to Hodgkin-Huxley type systems. Bernoulli, 23(4A):2587-2616, 2017. · Zbl 1388.60096
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.