×

Dynamical properties and some classes of non-porous subsets of Lebesgue spaces. (English) Zbl 07831972

It is well known that the set of hypercyclic vectors of a continuous operator acting on a seperable F-space is either empty or a dense \(G_\delta\). Therefore, it is interesting to see how small can the complement of the hypercyclic vectors be. One way to study this problem is through the geometric notion of \(\sigma\)-porous sets.
Inspired by the paper [F. Bayart, Proc. Am. Math. Soc. 133, No. 11, 3309–3316 (2005; Zbl 1202.47009)], the authors studies non-\(\sigma\)-porous subsets of Lebesgue spaces of measurable functions on a locally compact group. As an application, they show the existence of sequences of weighted tanslation operators for which the complement of the set of hypercyclic vectors is non-\(\sigma\)-porous. As a corollary, the authors show the following result for sequences of weighted backward shift operators on Banach sequence spaces:
Corollary. Let \(p \geq 1,\left(\gamma_n\right)_n \subseteq \mathbb{N}\) be strictly increasing and \(\left(w_n\right)_{n \in \mathbb{Z}}\) be a bounded sequence in \((0, \infty)\) such that \[ \left(\frac{1}{w_{\gamma_0} w_{\gamma_1} w_{\gamma_2} \cdots w_{\gamma_n}}\right)_n \in \ell^p(\mathbb{Z}) \] Then, the set of all non-hypercyclic vectors of the sequence \(\left(T_n\right)_n\) is not \(\sigma\)-porous, where \[ \left(T_{n+1} a\right)_k:=w_{\gamma_0} w_{\gamma_1} w_{\gamma_2} \cdots w_{\gamma_n} a_{k+\gamma_{n+1}}, \quad k \in \mathbb{N}_0 \] for all \(a:=\left(a_j\right)_j \in \ell^p(\mathbb{Z})\).

MSC:

47A16 Cyclic vectors, hypercyclic and chaotic operators
28A05 Classes of sets (Borel fields, \(\sigma\)-rings, etc.), measurable sets, Suslin sets, analytic sets
43A15 \(L^p\)-spaces and other function spaces on groups, semigroups, etc.
43A62 Harmonic analysis on hypergroups

Citations:

Zbl 1202.47009

References:

[1] F. Bayart, Porosity and hypercyclic operators, Proc. Amer. Math. Soc. 133 (2005), no. 11, 3309-3316. · Zbl 1202.47009
[2] F. Bayart and É. Matheron, Dynamics of Linear Operators, Cambridge Tracts in Math. 179, Cambridge University Press, Cambridge, 2009. · Zbl 1187.47001
[3] C. L. Belna, M. J. Evans and P. D. Humke, Symmetric and ordinary differentiation, Proc. Amer. Math. Soc. 72 (1978), no. 2, 261-267. · Zbl 0411.26004
[4] W. R. Bloom and H. Heyer, Harmonic Analysis of Probability Measures on Hypergroups, De Gruyter Stud. Math. 20, Walter de Gruyter, Berlin, 1995. · Zbl 0828.43005
[5] C. Chen and C.-H. Chu, Hypercyclic weighted translations on groups, Proc. Amer. Math. Soc. 139 (2011), no. 8, 2839-2846. · Zbl 1221.47017
[6] C.-C. Chen, S. Öztop and S. M. Tabatabaie, Disjoint dynamics on weighted Orlicz spaces, Complex Anal. Oper. Theory 14 (2020), no. 7, Paper No. 72, 18 pp. · Zbl 1508.47010
[7] C.-C. Chen and S. M. Tabatabaie, Chaotic operators on hypergroups, Oper. Matrices 12 (2018), no. 1, 143-156. · Zbl 1462.47006
[8] E. P. Dolženko, Boundary properties of arbitrary functions, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 3-14. · Zbl 0177.10604
[9] G. B. Folland, Real Analysis: Modern techniques and their applications, Second edition, John Wiley & Sons, New York, 1999. · Zbl 0924.28001
[10] K.-G. Grosse-Erdmann, Hypercyclic and chaotic weighted shifts, Studia Math. 139 (2000), no. 1, 47-68. · Zbl 0991.47013
[11] K.-G. Grosse-Erdmann and A. Peris Manguillot, Linear Chaos, Universitext, Springer, London, 2011. · Zbl 1246.47004
[12] R. I. Jewett, Spaces with an abstract convolution of measures, Advances in Math. 18 (1975), no. 1, 1-101. Digital Object Identifier: 10.1016/0001-8708(75)90002-X Google Scholar: Lookup Link zbMATH: 0325.42017 · Zbl 0325.42017 · doi:10.1016/0001-8708(75)90002-X
[13] V. Kumar and S. M. Tabatabaie, Hypercyclic sequences of weighted translations on hypergroups, Semigroup Forum 103 (2021), no. 3, 916-934. · Zbl 07431142
[14] D. Preiss and L. Zajíček, Fréchet differentiation of convex functions in a Banach space with a separable dual, Proc. Amer. Math. Soc. 91 (1984), no. 2, 202-204. · Zbl 0521.46034
[15] H. N. Salas, Hypercyclic weighted shifts, Trans. Amer. Math. Soc. 347 (1995), no. 3, 993-1004. · Zbl 0822.47030
[16] Y. Sawano, S. M. Tabatabaie and F. Shahhoseini, Disjoint dynamics of weighted translations on solid spaces, Topology Appl. 298 (2021), Paper No. 107709, 14 pp. · Zbl 1539.47019
[17] S. M. Tabatabaie and S. Ivković, Linear dynamics of discrete cosine functions on solid Banach function spaces, Positivity 25 (2021), no. 4, 1437-1448. · Zbl 1542.47059
[18] A. Villani, Another note on the inclusion \(L^p(\mu) \subset L^q(\mu)\), Amer. Math. Monthly 92 (1985), no. 7, 485-487. · Zbl 0592.46028
[19] L. Zajíček, Porosity and \(\sigma \)-porosity, Real Anal. Exchange 13 (1987), no. 2, 314-350. · Zbl 0666.26003
[20] ____, Small non-\( \sigma \)-porous sets in topologically complete metric spaces, Colloq. Math. 77 (1998), no. 2, 293-304. · Zbl 0909.28001
[21] ____, On \(\sigma \)-porous sets in abstract spaces, Abstr. Appl. Anal. (2005), no. 5, 509-534. · Zbl 1098.28003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.