×

Mixing property of \(C_0\)-semigroup of left multiplication operators. (English) Zbl 1343.47009

The relations between the dynamical properties of a bounded linear operator \(T\) and its corresponding left multiplication operator \(L_T\) were first considered by K. C. Chan and R. D. Taylor [Integral Equations Oper. Theory 41, No. 4, 381–388 (2001; Zbl 0995.46014)] and by J. Bonet et al. [J. Math. Anal. Appl. 297, No. 2, 599–611 (2004; Zbl 1062.47011)].
In the paper under review, the authors consider an analogous problem for the topologically mixing property in the context of \(C_0\)-semigroups, showing that the topologically mixing property is equivalent to be satisfied for a \(C_0\)-semigroup \(\{T_t\}_{t\geq 0}\) and for its corresponding left multiplication \(C_0\)-semigroup \(\{L_{T_t}\}_{t\geq 0}\) in the algebra of compact operators.

MSC:

47A16 Cyclic vectors, hypercyclic and chaotic operators
47D06 One-parameter semigroups and linear evolution equations
47L80 Algebras of specific types of operators (Toeplitz, integral, pseudodifferential, etc.)
Full Text: DOI

References:

[1] Ansari, S.I.: Existence of hypercyclic operators on topological vector spaces. J. Funct. Anal. 148, 384-390 (1997) · Zbl 0898.47019 · doi:10.1006/jfan.1996.3093
[2] Bayart, F., Matheron, E.: Hypercyclic operators failing the hypercyclicity criterion on classical Banach spaces. J. Funct. Anal. 250, 426-441 (2007) · Zbl 1131.47006 · doi:10.1016/j.jfa.2007.05.001
[3] Bonet, J., Martinez-Gimenez, F., Peris, A.: Universal and chaotic multipliers on spaces of operators. J. Math. Anal. Appl. 297, 599-611 (2004) · Zbl 1062.47011 · doi:10.1016/j.jmaa.2004.03.073
[4] Chan, K.C., Taylor Jr, R.D.: Hypercyclic subspaces of a Banach space. Integral Equ. Oper. Theory 41, 381-388 (2001) · Zbl 0995.46014 · doi:10.1007/BF01202099
[5] De la Rosa, M., Read, C.: A hypercyclic operator whose direct sum \[T \oplus T\] T⊕T is not hypercyclic. J Oper. Theory 61, 369-380 (2009) · Zbl 1193.47014
[6] Desch, W., Schappacher, W., Webb, G.F.: Hypercyclic and chaotic semigroups of linear operators. Ergod. Theory Dyn. Syst. 17, 793-819 (1997) · Zbl 0910.47033 · doi:10.1017/S0143385797084976
[7] Engel, K.J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Springer, New York (2000) · Zbl 0952.47036
[8] Fabian, M., Habala, P., Hajek, P., Montesinos, V., Zizler, V.: Banach Space Theory The Basis for Linear and Nonlinear Analysis. Springer, New York (2011) · Zbl 1229.46001
[9] Godefroy, G., Shapiro, G.: Operators with dense, invariant, cyclic vector manifolds. J. Funct. Anal. 98, 229-269 (1991) · Zbl 0732.47016 · doi:10.1016/0022-1236(91)90078-J
[10] Grosse-Erdman, K.G., Peris, A.: Linear Chaos. Springer, London (2011) · Zbl 1246.47004 · doi:10.1007/978-1-4471-2170-1
[11] Gupta, M., Mundayadan, A.: Supercyclicity in spaces of operators. Results Math. doi:10.1007/s00025-015-0463-1 · Zbl 1384.47003
[12] Petersson, H.: Hypercyclic conjugate operators. Integral Equ. Oper. Theory 57, 413-423 (2007) · Zbl 1141.47005 · doi:10.1007/s00020-006-1459-8
[13] Rolewicz, S.: On orbits of elements. Studia Math. 32, 17-22 (1969) · Zbl 0174.44203
[14] Zhang, L., Zhou, Z.-H.: Disjointness in supercyclicity on the algebras of Hilbert-Schmidt operators. Indian J. Pure Appl. Math. 46, 219-228 (2015) · Zbl 1364.47002 · doi:10.1007/s13226-015-0116-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.