×

Hybridized discontinuous Galerkin/hybrid mixed methods for a multiple network poroelasticity model with application in biomechanics. (English) Zbl 07779188

Summary: The quasi-static multiple-network poroelastic theory (MPET) model, first introduced in the context of geomechanics [G. Barenblatt, G. Zheltov, and I. Kochina, J. Appl. Math. Mech., 24 (1960), pp. 1286-1303], has recently found new applications in biomechanics. In practice, the parameters in the MPET equations can vary over several orders of magnitude which makes their stable discretization and fast solution a challenging task. Here, a new efficient parameter-robust hybridized discontinuous Galerkin method, which also features fluid mass conservation, is proposed for the MPET model. Its stability analysis, crucial for the well-posedness of the discrete problem, is performed, and cost-efficient parameter-robust preconditioners are derived. We present a series of numerical computations for a four-network MPET model of a human brain which demonstrate the performance of the new algorithms.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76S05 Flows in porous media; filtration; seepage
76Z05 Physiological flows
74L15 Biomechanical solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs

References:

[1] Arnold, D. N., Brezzi, F., Cockburn, B., and Marini, L. D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39 (2002), pp. 1749-1779. · Zbl 1008.65080
[2] Barenblatt, G., Zheltov, G., and Kochina, I., Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata], J. Appl. Math. Mech., 24 (1960), pp. 1286-1303. · Zbl 0104.21702
[3] Boffi, D., Brezzi, F., and Fortin, M., Mixed Finite Element Methods and Applications, , Springer, Heidelberg, 2013. · Zbl 1277.65092
[4] Chou, D., Vardakis, J. C., Guo, L., Tully, B. J., and Ventikos, Y., A fully dynamic multi-compartmental poroelastic system: Application to aqueductal stenosis, J. Biomech., 49 (2016), pp. 2306-2312.
[5] Cockburn, B. and Gopalakrishnan, J., A characterization of hybridized mixed methods for second order elliptic problems, SIAM J. Numer. Anal., 42 (2004), pp. 283-301. · Zbl 1084.65113
[6] Cockburn, B. and Gopalakrishnan, J., Incompressible finite elements via hybridization. Part I: The Stokes system in two space dimensions, SIAM J. Numer. Anal., 43 (2005), pp. 1627-1650. · Zbl 1145.76402
[7] Cockburn, B. and Gopalakrishnan, J., Incompressible finite elements via hybridization. Part II: The Stokes system in three space dimensions, SIAM J. Numer. Anal., 43 (2005), pp. 1651-1672. · Zbl 1145.76403
[8] Cockburn, B., Gopalakrishnan, J., and Lazarov, R., Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., 47 (2009), pp. 1319-1365. · Zbl 1205.65312
[9] Cockburn, B., Kanschat, G., and Schötzau, D., A locally conservative LDG method for the incompressible Navier-Stokes equations, Math. Comp., 74 (2005), pp. 1067-1095. · Zbl 1069.76029
[10] Cockburn, B., Kanschat, G., Schötzau, D., and Schwab, C., Local discontinuous Galerkin methods for the Stokes system, SIAM J. Numer. Anal., 40 (2002), pp. 319-343. · Zbl 1032.65127
[11] Frigo, M., Castelletto, N., Ferronato, M., and White, J. A., Efficient solvers for hybridized three-field mixed finite element coupled poromechanics, Comput. Math. Appl., 91 (2021), pp. 36-52. · Zbl 1524.76451
[12] Fu, G., Lehrenfeld, C., Linke, A., and Streckenbach, T., Locking-free and gradient-robust \(H(\rm div)\)-conforming HDG methods for linear elasticity, J. Sci. Comput., 86 (2021), 39. · Zbl 1460.65146
[13] Gopalakrishnan, J., Kogler, L., Lederer, P. L., and Schöberl, J., Divergence-conforming velocity and vorticity approximations for incompressible fluids obtained with minimal facet coupling, J. Sci. Comput., 95 (2023), 91. · Zbl 07698951
[14] Guo, L., Vardakis, J., Lassila, T., Mitolo, M., Ravikumar, N., Chou, D., Lange, M., Sarrami-Foroushani, A., Tully, B., Taylor, Z., Varma, S., Venneri, A., Frangi, A., and Ventikos, Y., Subject-specific multiporoelastic model for exploring the risk factors associated with the early stages of Alzheimer’s disease, Interface Focus, 8 (2017), 20170019.
[15] Guo, L., Vardakis, J. C., Chou, D., and Ventikos, Y., A multiple-network poroelastic model for biological systems and application to subject-specific modelling of cerebral fluid transport, Internat. J. Engrg. Sci., 147 (2020), 103204. · Zbl 07167840
[16] Hiptmair, R. and Xu, J., Nodal auxiliary space preconditioning in \({\boldsymbol H}({\rm curl})\) and \({\boldsymbol H}({\rm div})\) spaces, SIAM J. Numer. Anal., 45 (2007), pp. 2483-2509. · Zbl 1153.78006
[17] Hong, Q. and Kraus, J., Parameter-robust stability of classical three-field formulation of Biot’s consolidation model, Electron. Trans. Numer. Anal., 48 (2018), pp. 202-226. · Zbl 1398.65046
[18] Hong, Q., Kraus, J., Lymbery, M., and Philo, F., Conservative discretizations and parameter-robust preconditioners for Biot and multiple-network flux-based poroelasticity models, Numer. Linear Algebra Appl., 26 (2019), e2242. · Zbl 1463.65372
[19] Hong, Q., Kraus, J., Lymbery, M., and Philo, F., A new practical framework for the stability analysis of perturbed saddle-point problems and applications, Math. Comp., 92 (2023), pp. 607-634. · Zbl 1504.65203
[20] Hong, Q., Kraus, J., Xu, J., and Zikatanov, L., A robust multigrid method for discontinuous Galerkin discretizations of Stokes and linear elasticity equations, Numer. Math., 132 (2016), pp. 23-49. · Zbl 1338.76054
[21] Kauffman, J. A., Sheldon, J. P., and Miller, S. T., Overset meshing coupled with hybridizable discontinuous Galerkin finite elements, Internat. J. Numer. Methods Engrg., 112 (2017), pp. 403-433. · Zbl 07867215
[22] Kogler, L., Lederer, P. L., and Schöberl, J., A conforming auxiliary space preconditioner for the mass conserving stress-yielding method, Numer. Linear Algebra Appl., 30 (2023), e2503. · Zbl 07790626
[23] Kraus, J., Lazarov, R., Lymbery, M., Margenov, S., and Zikatanov, L., Preconditioning heterogeneous \(H(\text{div})\) problems by additive Schur complement approximation and applications, SIAM J. Sci. Comput., 38 (2016), pp. A875-A898. · Zbl 1380.65376
[24] Kraus, J., Lederer, P. L., Lymbery, M., and Schöberl, J., Uniformly well-posed hybridized discontinuous Galerkin/hybrid mixed discretizations for Biot’s consolidation model, Comput. Methods Appl. Mech. Engrg., 384 (2021), 113991. · Zbl 1507.76201
[25] Lederer, P. L., Lehrenfeld, C., and Schöberl, J., Hybrid discontinuous Galerkin methods with relaxed H(div)-conformity for incompressible flows. Part I, SIAM J. Numer. Anal., 56 (2018), pp. 2070-2094. · Zbl 1402.35209
[26] Lederer, P. L., Lehrenfeld, C., and Schöberl, J., Hybrid discontinuous Galerkin methods with relaxed H(div)-conformity for incompressible flows. Part II, ESAIM Math. Model. Numer. Anal., 53 (2019), pp. 503-522. · Zbl 1434.35058
[27] Lederer, P. L. and Stenberg, R., Energy Norm Analysis of Exactly Symmetric Mixed Finite Elements for Linear Elasticity, preprint, arXiv:2111.13513 [math.NA], 2021. · Zbl 1506.65219
[28] Lee, J., Piersanti, E., Mardal, K.-A., and Rognes, M., A mixed finite element method for nearly incompressible multiple-network poroelasticity, SIAM J. Sci. Comput., 41 (2019), pp. A722-A747. · Zbl 1417.65162
[29] Lehrenfeld, C. and Schöberl, J., High order exactly divergence-free hybrid discontinuous Galerkin methods for unsteady incompressible flows, Comput. Methods Appl. Mech. Engrg., 307 (2016), pp. 339-361. · Zbl 1439.76081
[30] Loghin, D. and Wathen, A. J., Analysis of preconditioners for saddle-point problems, SIAM J. Sci. Comput., 25 (2004), pp. 2029-2049. · Zbl 1067.65048
[31] Niu, C., Rui, H., and Hu, X., A stabilized hybrid mixed finite element method for poroelasticity, Comput. Geosci., 25 (2021), pp. 757-774. · Zbl 1460.65125
[32] Population Division of the United Nations Department of Economic and Social Affairs (UN DESA), World Population Ageing 2020 Highlights, 2020, https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/files/documents/2020/Sep/un_pop_2020_pf_ageing_10_key_messages.pdf.
[33] Schöberl, J., NETGEN An advancing front 2D/3D-mesh generator based on abstract rules, Comput. Vis. Sci., 1 (1997), pp. 41-52. · Zbl 0883.68130
[34] Schöberl, J., C++11 Implementation of Finite Elements in NGSolve, Institute for Analysis and Scientific Computing, Vienna University of Technology, 2014.
[35] Vardakis, J. C., Chou, D., Tully, B. J., Hung, C. C., Lee, T. H., Tsui, P.-H., and Ventikos, Y., Investigating cerebral oedema using poroelasticity, Med. Eng. Phys., 38 (2016), pp. 48-57.
[36] Verfürth, R., A combined conjugate gradient-multigrid algorithm for the numerical solution of the Stokes problem, IMA J. Numer. Anal., 4 (1984), pp. 441-455. · Zbl 0563.76028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.