×

On the importance of using region-dependent material parameters for full-scale human brain simulations. (English) Zbl 1516.74071

Summary: An accurate finite element (FE) model of the human brain reliably predicting its response to loading offers great possibilities for brain injury prevention, disease prediction, and surgical guidance. However, the brain is a very complex organ. One important aspect is the structural heterogeneity, both on a macroscopic and microscopic level. This also results in heterogeneous mechanical properties, which highly depend on the brain regions. The extent to which this heterogeneity affects the mechanical response of an FE simulated full brain remains largely unexplored. In this work, we investigate the importance of using region-specific material parameters when modelling the full human brain. Additionally, we assess how a prefixed Poisson’s ratio used for the determination of regional parameters affects the response of the full brain under loading. Finally, we compare the simulation results when using parameter sets that have been determined from the unconditioned and preconditioned behaviour of human brain tissue. Our results show that accounting for region-dependent properties leads to significant differences in the predicted strain state compared to simulations assuming homogeneous material properties. Also the Poisson’s ratio and using unconditioned or preconditioned data sets significantly affects the results of full-scale brain simulations, highlighting the importance of carefully selecting the material parameters used. The presented analyses have important implications for choosing appropriate region-dependent material parameters for full-scale FE human brain simulations in the future to ensure reliable predictions.

MSC:

74L15 Biomechanical solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
92C10 Biomechanics

References:

[1] Atsumi, N.; Nakahira, Y.; Iwamoto, M., Development and validation of a head/brain FE model and investigation of influential factor on the brain response during head impact, Int. J. Veh. Saf., 9, 1, 1-23 (2016)
[2] Budday, S.; Ovaert, T. C.; Holzapfel, G. A.; Steinmann, P.; Kuhl, E., Fifty shades of brain: A review on the mechanical testing and modeling of brain tissue, Arch. Comput. Methods Eng., 27, 4, 1187-1230 (2019)
[3] Budday, S.; Sarem, M.; Starck, L.; Sommer, G.; Pfefferle, J.; Phunchago, N.; Kuhl, E.; Paulsen, F.; Steinmann, P.; Shastri, V.; Holzapfel, G., Towards microstructure-informed material models for human brain tissue, Acta Biomater., 104, 53-65 (2020)
[4] Budday, S.; Sommer, G.; Birkl, C.; Langkammer, C.; Haybaeck, J.; Kohnert, J.; Bauer, M.; Paulsen, F.; Steinmann, P.; Kuhl, E.; Holzapfel, G., Mechanical characterization of human brain tissue, Acta Biomater., 48, 319-340 (2017)
[5] Budday, S.; Sommer, G.; Haybaeck, J.; Steinmann, P.; Holzapfel, G.; Kuhl, E., Rheological characterization of human brain tissue, Acta Biomater., 60, 315-329 (2017)
[6] Budday, S.; Steinmann, P.; Kuhl, E., Physical biology of human brain development, Front. Cell. Neurosci., 9 (2015)
[7] Champagne, A. A.; Peponoulas, E.; Terem, I.; Ross, A.; Tayebi, M.; Chen, Y.; Coverdale, N. S.; Nielsen, P. M.F.; Wang, A.; Shim, V.; Holdsworth, S. J.; Cook, D. J., Novel strain analysis informs about injury susceptibility of the corpus callosum to repeated impacts, Brain Commun., 1, 1 (2019)
[8] Chen, Y.; Ostoja-Starzewski, M., MRI-based finite element modeling of head trauma: spherically focusing shear waves, Acta Mech., 213, 1-2, 155-167 (2010) · Zbl 1320.74099
[9] Cloots, R.; Gervaise, H.; van Dommelen, J.; Geers, M., Biomechanics of traumatic brain injury: Influences of the morphologic heterogeneities of the cerebral cortex, Ann. Biomed. Eng., 36, 7, 1203-1215 (2008)
[10] Comellas, E.; Budday, S.; Pelteret, J.-P.; Holzapfel, G. A.; Steinmann, P., Modeling the porous and viscous responses of human brain tissue behavior, Comput. Methods Appl. Mech. Engrg., 369, Article 113128 pp. (2020) · Zbl 1506.74204
[11] Darvish, K.; Crandall, J., Nonlinear viscoelastic effects in oscillatory shear deformation of brain tissue, Med. Eng. Phys., 23, 9, 633-645 (2001)
[12] DeLorenzo, C.; Papademetris, X.; Staib, L. H.; Vives, K. P.; Spencer, D. D.; Duncan, J. S., Volumetric intraoperative brain deformation compensation: Model development and phantom validation, IEEE Trans. Med. Imaging, 31, 8, 1607-1619 (2012)
[13] Eskandari, F.; Rahmani, Z.; Shafieian, M., The effect of large deformation on Poisson’s ratio of brain white matter: An experimental study, Proc. Inst. Mech. Eng. H, 235, 4, 401-407 (2020)
[14] Faber, J.; Hinrichsen, J.; Greiner, A.; Reiter, N.; Budday, S., Tissue-scale biomechanical testing of brain tissue for the calibration of nonlinear material models, Curr. Protoc., 2, 4, Article e381 pp. (2022)
[15] Finan, J. D.; Sundaresh, S. N.; Elkin, B. S.; McKhann, G. M.; Morrison, B., Regional mechanical properties of human brain tissue for computational models of traumatic brain injury, Acta Biomater., 55, 333-339 (2017)
[16] Ghajari, M.; Hellyer, P. J.; Sharp, D. J., Computational modelling of traumatic brain injury predicts the location of chronic traumatic encephalopathy pathology, Brain, 140, 2, 333-343 (2017)
[17] Goriely, A.; Geers, M. G.D.; Holzapfel, G. A.; Jayamohan, J.; Jérusalem, A.; Sivaloganathan, S.; Squier, W.; van Dommelen, J. A.W.; Waters, S.; Kuhl, E., Mechanics of the brain: perspectives, challenges, and opportunities, Biomech. Model. Mechanobiol., 14, 5, 931-965 (2015)
[18] Greiner, A.; Kaessmair, S.; Budday, S., Physical aspects of cortical folding, Soft Matter, 17, 5, 1210-1222 (2021)
[19] Griffiths, E.; Budday, S., Finite element modeling of traumatic brain injury: Areas of future interest, Curr. Opin. Biomed. Eng., 24, Article 100421 pp. (2022)
[20] Harris, T. C.; de Rooij, R.; Kuhl, E., The shrinking brain: Cerebral atrophy following traumatic brain injury, Ann. Biomed. Eng., 47, 9, 1941-1959 (2018)
[21] Hinrichsen, J.; Reiter, N.; Bräuer, L.; Paulsen, F.; Kaessmair, S.; Budday, S., Inverse identification of region-specific hyperelastic material parameters for human brain tissue (2022), Preprint at https://www.biorxiv.org/content/10.1101/2022.12.19.521022v1
[22] Hiscox, L. V.; McGarry, M. D.J.; Schwarb, H.; Houten, E. E.W. V.; Pohlig, R. T.; Roberts, N.; Huesmann, G. R.; Burzynska, A. Z.; Sutton, B. P.; Hillman, C. H.; Kramer, A. F.; Cohen, N. J.; Barbey, A. K.; Paulsen, K. D.; Johnson, C. L., Standard-space atlas of the viscoelastic properties of the human brain, Hum. Brain Mapp., 41, 18, 5282-5300 (2020)
[23] Ho, J.; Kleiven, S., Can sulci protect the brain from traumatic injury?, J. Biomech., 42, 13, 2074-2080 (2009)
[24] Holland, M. A.; Budday, S.; Li, G.; Shen, D.; Goriely, A.; Kuhl, E., Folding drives cortical thickness variations, Eur. Phys. J. Spec. Top., 229, 17-18, 2757-2778 (2020)
[25] Hoppstädter, M.; Püllmann, D.; Seydewitz, R.; Kuhl, E.; Böl, M., Correlating the microstructural architecture and macrostructural behaviour of the brain, Acta Biomater., 151, 379-395 (2022)
[26] Laksari, K.; Shafieian, M.; Darvish, K., Constitutive model for brain tissue under finite compression, J. Biomech., 45, 4, 642-646 (2012)
[27] Li, W.; Shepherd, D. E.; Espino, D. M., Dynamic mechanical characterization and viscoelastic modeling of bovine brain tissue, J. Mech. Behav. Biomed. Mater., 114, Article 104204 pp. (2021)
[28] Li, X.; Zhou, Z.; Kleiven, S., An anatomically detailed and personalizable head injury model: Significance of brain and white matter tract morphological variability on strain, Biomech. Model. Mechanobiol., 20, 2, 403-431 (2021)
[29] Liu, Y.; Domel, A. G.; Yousefsani, S. A.; Kondic, J.; Grant, G.; Zeineh, M.; Camarillo, D. B., Validation and comparison of instrumented mouthguards for measuring head kinematics and assessing brain deformation in football impacts, Ann. Biomed. Eng., 48, 11, 2580-2598 (2020)
[30] Madhukar, A.; Ostoja-Starzewski, M., Finite element methods in human head impact simulations: A review, Ann. Biomed. Eng., 47, 9, 1832-1854 (2019)
[31] Mao, H.; Zhang, L.; Jiang, B.; Genthikatti, V. V.; Jin, X.; Zhu, F.; Makwana, R.; Gill, A.; Jandir, G.; Singh, A., Development of a finite element human head model partially validated with thirty five experimental cases, J. Biomech. Eng., 135, 11, Article 111002 pp. (2013)
[32] Menichetti, A.; MacManus, D. B.; Gilchrist, M. D.; Depreitere, B.; Sloten, J. V.; Famaey, N., Regional characterization of the dynamic mechanical properties of human brain tissue by microindentation, Internat. J. Engrg. Sci., 155, Article 103355 pp. (2020) · Zbl 1519.92022
[33] Miga, M.; Paulsen, K.; Kennedy, F.; Hoopes, J.; Hartov, A.; Roberts, D., Initial in-vivo analysis of 3D heterogeneous brain computations for model-updated image-guided neurosurgery, (Wells, W. M.; Colchester, A.; Delp, S., Medical Image Computing and Computer-Assisted Intervention — MICCAI’98 (1998), Springer: Springer Berlin, Heidelberg), 743-752
[34] Miller, K.; Lu, J., On the prospect of patient-specific biomechanics without patient-specific properties of tissues, J. Mech. Behav. Biomed. Mater., 27, 154-166 (2013)
[35] Miller, L. E.; Urban, J. E.; Stitzel, J. D., Development and validation of an atlas-based finite element brain model, Biomech. Model. Mechanobiol., 15, 5, 1201-1214 (2016)
[36] Miller, K.; Wittek, A.; Joldes, G., Biomechanical modeling of the brain for computer-assisted neurosurgery, (Biomechanics of the Brain (2011), Springer: Springer New York), 111-136
[37] Moran, R.; Smith, J. H.; García, J. J., Fitted hyperelastic parameters for Human brain tissue from reported tension, compression, and shear tests, J. Biomech., 47, 15, 3762-3766 (2014)
[38] Noël, L.; Kuhl, E., Modeling neurodegeneration in chronic traumatic encephalopathy using gradient damage models, Comput. Mech., 64, 5, 1375-1387 (2019) · Zbl 1462.74115
[39] Ogden, R. W., Large deformation isotropic elasticity: on the correlation of theory and experiment for compressible rubberlike solids, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 328, 1575, 567-583 (1972), URL https://royalsocietypublishing.org/doi/10.1098/rspa.1972.0096 · Zbl 0245.73032
[40] Prange, M. T.; Margulies, S. S., Regional, directional, and age-dependent properties of the brain undergoing large deformation, J. Biomech. Eng., 124, 2, 244-252 (2002)
[41] Prevost, T. P.; Balakrishnan, A.; Suresh, S.; Socrate, S., Biomechanics of brain tissue, Acta Biomater., 7, 1, 83-95 (2011)
[42] Reiter, N.; Roy, B.; Paulsen, F.; Budday, S., Insights into the microstructural origin of brain viscoelasticity, J. Elasticity, 145, 1-2, 99-116 (2021) · Zbl 1475.74101
[43] Škrinjar, O.; Nabavi, A.; Duncan, J., Model-driven brain shift compensation, Med. Image Anal., 6, 4, 361-373 (2002)
[44] Soza, G.; Grosso, R.; Nimsky, C.; Hastreiter, P.; Fahlbusch, R.; Greiner, G., Determination of the elasticity parameters of brain tissue with combined simulation and registration, Int. J. Med. Robot. Comput. Assist. Surg., 1, 3, 87-95 (2005)
[45] Viano, D. C.; Casson, I. R.; Pellman, E. J.; Zhang, L.; King, A. I.; Yang, K. H., Concussion in professional football: brain responses by finite element analysis: part 9, Neurosurgery, 57, 5, 891-916 (2005)
[46] Weickenmeier, J.; Saez, P.; Butler, C. A.M.; Young, P. G.; Goriely, A.; Kuhl, E., Bulging brains, J. Elasticity, 129, 1-2, 197-212 (2016) · Zbl 1373.74076
[47] Wittek, A.; Bourantas, G.; Zwick, B. F.; Joldes, G.; Esteban, L.; Miller, K., Mathematical modeling and computer simulation of needle insertion into soft tissue, PLOS ONE, 15, 12, Article e0242704 pp. (2020)
[48] Wittek, A.; Hawkins, T.; Miller, K., On the unimportance of constitutive models in computing brain deformation for image-guided surgery, Biomech. Model. Mechanobiol., 8, 1, 77-84 (2008)
[49] Zarzor, M.; Kaessmair, S.; Steinmann, P.; Blümcke, I.; Budday, S., A two-field computational model couples cellular brain development with cortical folding, Brain Multiphys., 2, Article 100025 pp. (2021)
[50] Zhao, W.; Ji, S., Mesh convergence behavior and the effect of element integration of a human head injury model, Ann. Biomed. Eng., 47, 2, 475-486 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.