×

Explicit expressions for the variogram of first-order intrinsic autoregressions. (English) Zbl 1326.62192

Summary: Exact and explicit expressions for the variogram of first-order intrinsic autoregressions have not been known. Various asymptotic expansions and approximations have been used to compute the variogram. In this note, an exact and explicit expression applicable for all parameter values is derived. The expression involves Appell’s hypergeometric function of the fourth kind. Various particular cases of the expression are also derived.

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
33C65 Appell, Horn and Lauricella functions
33C90 Applications of hypergeometric functions
62M20 Inference from stochastic processes and prediction

Software:

F1

References:

[1] W.N. Bailey, The generating function of Jacobi polynomials , J. London Math. Soc. 13 (1938) 8-12. · Zbl 0018.12202 · doi:10.1112/jlms/s1-13.1.8
[2] J.E. Besag, On a system of two-dimensional recurrence equations , J. Roy. Statist. Soc. Ser. B 43 (1981) 302-309. · Zbl 0487.60045
[3] J.E. Besag and C. Kooperberg, On conditional and intrinsic autoregressions , Biometrika 82 (1995) 733-746. · Zbl 0899.62123
[4] J.E. Besag and D. Mondal, First-order intrinsic autoregressions and the de Wijs process , Biometrika 92 (2005) 909-920. · Zbl 1151.62068 · doi:10.1093/biomet/92.4.909
[5] W. Bühring, Transformation formulas for terminating Saalschützian hypergeometric series of unit argument , J. Appl. Math. Stochastic Anal. 8 (1995) 415-422.
[6] W. Bühring and H.M. Srivastava, Analytic continuation of the generalized hypergeometric series near unit argument with emphasis on the zero-balanced series , In Approximation theory and applications , 17-35. Hadronic Press, Palm Harbor, FL, 1998. · Zbl 0965.33003
[7] F.D. Colavecchia and G. Gasaneo, f1:, a code to compute Appell’s F 1 hypergeometric function , Comput. Phys. Commun. 157 (2004) 32-38. · Zbl 1196.33019 · doi:10.1016/S0010-4655(03)00490-9
[8] F.D. Colavecchia, G. Gasaneo and J.R. Miraglia, Numerical evaluation of Appell’s F 1 hypergeometric function , Comput. Phys. Commun. 138 (2001) 29-43. · Zbl 0984.65017 · doi:10.1016/S0010-4655(01)00186-2
[9] R.J. Duffin and D.H. Shaffer, Asymptotic expansion of double Fourier transforms , Duke Math. J. 27 (1960) 581-596. · Zbl 0096.31001 · doi:10.1215/S0012-7094-60-02756-3
[10] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products (Corrected and Enlarged Edition prepared by A. Jeffrey and D. Zwillinger), Sixth ed., Academic Press, New York, 2000. · Zbl 0981.65001
[11] R.A. Kempton and C.W. Howes, The use of neighbouring plot values in the analysis of variety trials , Appl. Statist. 30 (1981) 59-70.
[12] H.R. Künsch, Intrinsic autoregressions and related models on the two-dimensional lattice , Biometrika 74 (1987) 517-524. · Zbl 0671.62082 · doi:10.1093/biomet/74.3.517
[13] Y.L. Luke, The Special Functions and their Approximations , Vol. 1, Academic Press, New York, 1969. · Zbl 0193.01701
[14] W.H. McCrea and F.J.W. Whipple, Random paths in two and three dimensions , Proc. Roy. Soc. Edinburgh 60 (1940) 281-298. · Zbl 0027.33903
[15] A.W. Niukkanen, Factorization method and special transformations of the Appell function F 4 and Horn functions H 1 and G 2 , Usp. Mat. Nauk 54 (1999) 169-170. · Zbl 1016.33011 · doi:10.1070/RM1999v054n06ABEH000242
[16] O.S. Paramonova and A.V. Niukkanen, Computer-aided analysis of formulas for the transformation of Appell and Horn functions , Program. Comput. Software 28 (2002), no. 2, 70-75. · Zbl 1037.68163 · doi:10.1023/A:1014820700124
[17] A.P. Prudnikov, Yu.A. Brychkov and O.I. Marichev, Integrals and series 4. Direct Laplace transforms , Gordon and Breach Science Publishers, New York, 1992. · Zbl 0786.44003
[18] M. Saigo and H.M. Srivastava, The behavior of the zero-balanced hypergeometric series p F p - 1 near the boundary of its convergence region , Proc. Amer. Math. Soc. 110 (1990) 71-76. · Zbl 0689.33003 · doi:10.2307/2048243
[19] T. Sasaki and M. Yoshida, Linear differential equations in two variables of rank four , Math. Ann. 282 (1988) 69-93. · Zbl 0627.35014 · doi:10.1007/BF01457013
[20] F. Spitzer, Principles of Random Walk , Van Nostrand, Princeton, 1964. · Zbl 0119.34304
[21] A.K. Srivastava, Asymptotic behaviour of certain zero-balanced hypergeometric series , Proc. Indian Acad. Sci. (Math. Sci.) 106 (1996) 39-51. · Zbl 0863.33004 · doi:10.1007/BF02837185
[22] H.M. Srivastava and P.W. Karlsson, Multiple Gaussian Hypergeometric Series , Chichester: Ellis Horwood Limited (Halsted Press), John Wiley & Sons, NY \cdot Chichester \cdot Brisbane \cdot Toronto, 1985. · Zbl 0552.33001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.