×

Homogenised model for the electrical current distribution within a submerged arc furnace for silicon production. (English) Zbl 1504.78019

Summary: Silicon is produced in submerged arc furnaces which are heated by electric currents passing through the furnace. It is important to understand the distribution of heating within the furnace in order to accurately model the silicon production process, yet many existing studies neglect aspects of this current flow. In the present paper, we formulate a model that couples the electrical current to thermal, material flow and chemical processes in the furnace. We then exploit disparate timescales to homogenise the model over the timescale of the alternating current, deriving averaged equations for the slow evolution of the system. Our numerical simulations predict a minimum applied current that is required in order to obtain steady-state solutions of the homogenised model and show that for high enough applied currents, two spatially heterogeneous steady-state solutions exist, with distinct crater sizes. We show that the system evolves to the steady state with a larger crater radius and explain this behaviour in terms of the overall power balance typically found within a furnace. We find that the industrial practice of stoking furnaces increases the overall rate of material consumption in the furnace, thereby improving the efficiency of silicon production.

MSC:

78M40 Homogenization in optics and electromagnetic theory
78A35 Motion of charged particles
78A40 Waves and radiation in optics and electromagnetic theory
78A55 Technical applications of optics and electromagnetic theory
80A21 Radiative heat transfer
80A19 Diffusive and convective heat and mass transfer, heat flow
80A32 Chemically reacting flows
35R35 Free boundary problems for PDEs
Full Text: DOI

References:

[1] Andresen, B. (1995) Process Model for Carbothermic Production of Silicon Metal. Master’s thesis, NTH, Norway.
[2] Baer, M. R. & Nunziato, J. W. (1986) A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Int. J. Multiphase Flow12(6), 861-889. · Zbl 0609.76114
[3] Bakken, J. A., Gu, L., Larsen, H. L. & Sevastyanenko, V. G. (1997) Numerical modeling of electric arcs. J. Eng. Phys. Thermophys.70(4), 530-543.
[4] Bermúdez, A., Muñiz, M. C., Pena, F. & Bullón, J. (1999) Numerical computation of the electromagnetic field in the electrodes of a three-phase arc furnace. Int. J. Numerical Methods Eng.46(5), 649-658. · Zbl 1007.78016
[5] Bowman, B. & Krüger, K. (2009) Arc Furnace Physics, Verlag Stahleisen Düsseldorf.
[6] Boyer, F., Guazzelli, É. & Pouliquen, O. (2011) Unifying suspension and granular rheology. Phys. Rev. Lett.107(18), 188301. · Zbl 1241.76008
[7] Brennen, C. E. (2005) Fundamentals of Multiphase Flow, Cambridge University Press, Cambridge, UK. · Zbl 1127.76001
[8] Budd, C., Chapman, S. J., Lacey, A. A. & Ockendon, J. R. (1990) Electric arc problem. Study group report. http://www.maths-in-industry.org/miis/651/1/p2.pdf.
[9] Budd, C., Jones, A., Biesenbach, H. & Halvorsen, S. Elkem arc problem. Study group report, personal communication from Elkem.
[10] Byrne, H. & Norbury, J. (1994) Stable solutions for a catalytic converter. SIAM J. Appl. Math.54(3), 789-813. · Zbl 0805.35140
[11] Cowley, M. D. (1974) Integral methods of analysing electric arcs: I. Formulation. J. Phys. D Appl. Phys.7(16), 2218.
[12] Davidson, P. A. (2001) Introduction to Magnetohydrodynamics, Cambridge University Press, Cambridge, UK. · Zbl 0974.76002
[13] Dhainaut, M. (2004) Simulation of the electric field in a submerged arc furnace. In: Proceedings of the Tenth International Ferroalloy Congress, pp. 605-613.
[14] Eidem, P. A. (2008) Electrical Resistivity of Coke Beds. PhD thesis, NTNU, Norway.
[15] Forterre, Y. & Pouliquen, O. (2008) Flows of dense granular media. Ann. Rev. Fluid Mech.40, 1-24. · Zbl 1136.76051
[16] González-Fariña, R., Münch, A., Oliver, J. M. & Van Gorder, R. A. (2020) Modeling microsilica particle formation and growth due to the combustion reaction of silicon monoxide with oxygen. SIAM J. Appl. Math.80(2), 1003-1033. · Zbl 1447.35055
[17] Gustavsson, N. (2004) Evaluation and Simulation of Black-Box Arc Models for High-Voltage Circuit-Breakers. Master’s thesis, Institutionen för systemteknik, Norway.
[18] Halvorsen, S. A., Schei, A. & Downing, J. H. (1992) A unidimensional dynamic model for the (ferro-) silicon process. In: Electrical Furnace Conference Proceedings, Vol. 50, pp. 45-59.
[19] Hannesson, T. H. (2016) The Si Process Process, Elkem Iceland.
[20] Herland, E. V., Sparta, M. & Halvorsen, S. A. (2019) Skin and proximity effects in electrodes and furnace shells. Metall. Mater. Trans. B 50(6), 2884-2897.
[21] Hinch, E. J. (1991) Perturbation Methods, Cambridge University Press, Cambridge, UK. · Zbl 0746.34001
[22] Howell, J. R. & Siegel, R. (2002) Thermal Radiation Heat Transfer, 4th ed., Taylor and Francis, Boca Raton, FL.
[23] Hoyaux, M. F. (1968) Arc Physics, Springer, New York, NY.
[24] , personal communication.
[25] Jones, G. R. & Fang, M. T. C. (1980) The physics of high-power arcs. Rep. Prog. Phys.43(12), 1415-1465.
[26] Kadkhodabeigi, M. (2011) Modeling of Tapping Processes in Submerged Arc Furnaces. PhD thesis, NTNU, Norway.
[27] Kadkhodabeigi, M., Tveit, H. & Berget, K. H. (2010) Silicon process – new hood design for tapping gas collection. In: Twelfth International Ferroalloys Congress, pp. 109-119.
[28] Kierzenka, J. & Shampine, L. F. (2001) A BVP solver based on residual control and the MATLAB PSE. ACM Trans. Math. Software 27(3), 299-316. · Zbl 1070.65555
[29] Kiradjiev, K. B., Halvorsen, S. A., Van Gorder, R. A. & Howison, S. D. (2019) Maxwell-type models for the effective thermal conductivity of a porous material with radiative transfer in the voids. Int. J. Thermal Sci. 145, 106009.
[30] Lago, F., Gonzalez, J. J., Freton, P. & Gleizes, A. (2004) A numerical modelling of an electric arc and its interaction with the anode: Part I. The two-dimensional model. J. Phys. D Appl. Phys.37(6), 883-897.
[31] Lowke, J. J. (1979) Simple theory of free-burning arcs. J. Phys. D Appl. Phys.12(11), 1873-1886.
[32] Modest, M. F. (2013) Radiative Heat Transfer, Academic Press, Amsterdam, The Netherlands.
[33] Mrozowski, S. (1952) Semiconductivity and diamagnetism of polycrystalline graphite and condensed ring systems. Phys. Rev.85(4), 609.
[34] Ni, J. & Beckermann, C. (1991) A volume-averaged two-phase model for transport phenomena during solidification. Metall. Trans. B 22(3), 349-361.
[35] Pfender, E. (1978) Electric arcs and arc gas heaters. Gaseous Electron.1(5), 291-298.
[36] Ramakrishnan, S., Stokes, A. D. & Lowke, J. J. (1978) An approximate model for high-current free-burning arcs. J. Phys. D Appl. Phys.11(16), 2267-2280.
[37] Rivière, P. & Soufiani, A. (2012) Updated band model parameters for \(\text{H}_2\text{O} , \text{CO}_2 , \text{CH}_4\) and CO radiation at high temperature. Int. J. Heat Mass Transfer55(13-14), 3349-3358.
[38] Rooney, C. M., Please, C. P. & Howison, S. D. (2020) Homogenisation applied to thermal radiation in porous media. Eur. J. Appl. Math., 1-22. https://doi.org/10.1017/S0956792520000388.
[39] Sævarsdóttir, G. A. (2002) High Current AC Arcs in Silicon and Ferrosilicon Furnaces. PhD thesis, NTNU, Norway.
[40] Sævarsdóttir, G. A. & Bakken, J. A. (2010) Current distribution in submerged arc furnaces for silicon metal/ferrosilicon production. In: The 12th International Ferroalloys Congress, pp. 717-728.
[41] Scheepers, E., Adema, A. T., Yang, Y. & Reuter, M. A. (2006) The development of a CFD model of a submerged arc furnace for phosphorus production. Minerals Eng.19(10), 1115-1125.
[42] Schei, A., Tuset, J. K., Tveit, H., et al. (1998) Production of High Silicon Alloys, Tapir Trondheim, Norway.
[43] Schlitz, L. Z., Garimella, S. V. & Chan, S. H. (1999) Gas dynamics and electromagnetic processes in high-current arc plasmas. Part I. Model formulation and steady-state solutions. J. Appl. Phys.85(5), 2540-2546.
[44] Shampine, L. F. & Reichelt, M. W. (1997) The MATLAB ODE suite. SIAM J. Sci. Comput.18(1), 1-22. · Zbl 0868.65040
[45] Sloman, B. M. (2018) Mathematical Modelling of Silicon Furnaces. PhD thesis, University of Oxford, UK.
[46] Sloman, B. M., Please, C. P. & Van Gorder, R. A. (2018) Asymptotic analysis of a silicon furnace model. SIAM J. Appl. Math.78(2), 1174-1205. · Zbl 1394.80009
[47] Sloman, B. M., Please, C. P. & Van Gorder, R. A. (2019) Homogenization of a shrinking core model for gas-solid reactions in granular particles. SIAM J. Appl. Math.79(1), 177-206. · Zbl 1461.35029
[48] Sloman, B. M., Please, C. P. & Van Gorder, R. A. (2020) Melting and dripping of a heated material with temperature-dependent viscosity in a thin vertical tube. J. Fluid Mech.905, A16. · Zbl 1460.80014
[49] Sloman, B. M., Please, C. P., Van Gorder, R. A., Valderhaug, A. M., Birkeland, R. G. & Wegge, H. (2017) A heat and mass transfer model of a silicon pilot furnace. Metall. Mater. Trans. B 48(5), 2664-2676.
[50] Tesfahunegn, Y. A., Magnusson, T., Tangstad, M. & Sævarsdóttir, G. A. (2018) Effect of electrode shape on the current distribution in submerged arc furnaces for silicon production - a modelling approach. J. South. Af. Inst. Min. Metall.118(6), 595-600.
[51] Thompson, A. B., Richardson, G., Dellar, P., Mcguinness, M. & Budd, C. (2010) Arc phenomena in low-voltage current limiting circuit breakers. Study group report. Phenomena in low-voltage current limiting circuit breakers.
[52] Valderhaug, A. M. (1992) Modelling and Control of Submerged-arc Ferrosilicon Furnaces. PhD thesis, NTNU, Norway.
[53] Wang, X., Liu, J., Gong, Y., Li, G. & Ma, T. (1997) An electrostatic magnetohydrodynamics theory for resistive-viscous helical instabilities of arc discharges. Phys. Plasmas4(8), 2791-2797.
[54] Westermoen, A. (2007) Modelling of Dynamic Arc Behaviour in a Plasma Reactor. PhD thesis, NTNU, Norway.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.