×

The Pareto-Poisson distribution: characteristics, estimations and engineering applications. (English) Zbl 07730331

Sankhyā, Ser. A 85, No. 1, 1058-1099 (2023); correction ibid. 85, No. 1, 1100-1101 (2023).
Summary: A new three-parameter lifetime distribution based on compounding Pareto and Poisson distributions is introduced and discussed. Various statistical and reliability properties of the proposed distribution including: quantiles, ordinary moments, median, mode, quartiles, mean deviations, cumulants, generating functions, entropies, mean residual life, order statistics and stress-strength reliability are obtained. In presence of data collected under Type-II censoring, from frequentist and Bayesian points of view, the model parameters are estimated. Using independent gamma priors, Bayes estimators against the squared-error, linear-exponential and general-entropy loss functions are developed. Based on asymptotic properties of the classical estimators, asymptotic confidence intervals of the unknown parameters are constructed using observed Fisher’s information. Since the Bayes estimators cannot be obtained in closed-form, Markov chain Monte Carlo techniques are considered to approximate the Bayes estimates and to construct the highest posterior density intervals. A Monte Carlo simulation study is conducted to examine the performance of the proposed methods using various choices of effective sample size. To highlight the perspectives of the utility and flexibility of the new distribution, two numerical applications using real engineering data sets are investigated and showed that the proposed model fits well compared to other eleven lifetime models.

MSC:

62E10 Characterization and structure theory of statistical distributions
62F10 Point estimation
62F15 Bayesian inference
62N01 Censored data models
62N02 Estimation in survival analysis and censored data
Full Text: DOI

References:

[1] Aarset, MV, How to identify a bathtub hazard rate, IEEE Trans. Reliab., 36, 1, 106-108 (1987) · Zbl 0625.62092 · doi:10.1109/TR.1987.5222310
[2] Adamidis, K.; Loukas, S., A lifetime distribution with decreasing failure rate, Stat. Probab. Lett., 39, 35-42 (1998) · Zbl 0908.62096 · doi:10.1016/S0167-7152(98)00012-1
[3] Amigó, JM; Balogh, SG; Hernández, S., A brief review of generalized entropies, Entropy, 20, 11, 813 (2018) · doi:10.3390/e20110813
[4] Asgharzadeh, A.; Bakouch, HS; Esmaeili, L., Pareto Poisson-Lindley distribution with applications, J. Appl. Stat., 40, 8, 1717-1734 (2013) · Zbl 1514.62417 · doi:10.1080/02664763.2013.793886
[5] Barreto-Souza, W.; Cribari-Neto, F., A generalization of the exponential-Poisson distribution, Stat. Probab. Lett., 79, 24, 2493-2500 (2009) · Zbl 1176.62005 · doi:10.1016/j.spl.2009.09.003
[6] Berger, J.O. (2013). Statistical Decision Theory and Bayesian Analysis. Springer Science and Business Media.
[7] Chen, MH; Shao, QM, Monte Carlo estimation of Bayesian credible and HPD intervals, J. Comput. Graph. Stat., 8, 69-92 (1999)
[8] De Morais, A.L. (2009). A Class of Generalized Beta Distributions, Pareto Power Series and Weibull Power Series. Dissertação de mestrado-Universidade Federal de Pernambuco. CCEN.
[9] Elbatal, I., Zayed, M., Rasekhi, M. and Butt, N.S. (2017). The exponential Pareto power series distribution: Theory and applications. Pak. J. Stat. Oper. Res., 603-615. · Zbl 1509.60034
[10] Elshahhat, A.; Aljohani, HM; Afify, AZ, Bayesian and classical inference under type-II censored samples of the extended inverse Gompertz distribution with engineering applications, Entropy, 23, 12, 1578 (2021) · doi:10.3390/e23121578
[11] Gelman, A.; Rubin, DB, Inference from iterative simulation using multiple sequence, Stat. Sci., 7, 457-511 (1992) · Zbl 1386.65060 · doi:10.1214/ss/1177011136
[12] Gelman, A.; Carlin, JB; Stern, HS; Dunson, DB; Vehtari, A.; Rubin, DB, Bayesian Data Analysis (2004), USA: Chapman and Hall/CRC, USA · Zbl 1279.62004
[13] Glaser, RE, Bathtub and related failure rate characterizations, J. Amer. Stat. Assoc., 75, 667-672 (1980) · Zbl 0497.62017 · doi:10.1080/01621459.1980.10477530
[14] Gupta, RC; Gupta, RD; Gupta, PL, Modeling failure time data by Lehman alternatives, Commun. Stat.-Theory Methods, 27, 4, 887-904 (1998) · Zbl 0900.62534 · doi:10.1080/03610929808832134
[15] Gupta, RD; Kundu, D., Generalized exponential distribution: different method of estimations, J. Stat. Comput. Simul., 69, 4, 315-337 (2001) · Zbl 1007.62011 · doi:10.1080/00949650108812098
[16] Henningsen, A.; Toomet, O., maxlik: A package for maximum likelihood estimation in R, Comput. Stat., 26, 3, 443-458 (2011) · Zbl 1304.65039 · doi:10.1007/s00180-010-0217-1
[17] Johnson, N.; Kotz, S.; Balakrishnan, N., Continuous Univariate Distributions (1994), New York: Wiley, New York · Zbl 0811.62001
[18] Jorgensen, B., Statistical Properties of the Generalized Inverse Gaussian Distribution (2012), New York: Springer, New York
[19] Kundu, D., Bayesian inference and life testing plan for the Weibull distribution in presence of progressive censoring, Technometrics, 50, 2, 144-154 (2008) · doi:10.1198/004017008000000217
[20] Lawless, JF, Statistical Models and Methods For Lifetime Data (2003), New Jersey: Wiley, New Jersey · Zbl 1015.62093
[21] Kuş, C., A new lifetime distribution, Comput. Stat. Data Anal., 51, 9, 4497-4509 (2007) · Zbl 1162.62309 · doi:10.1016/j.csda.2006.07.017
[22] Lu, W.; Shi, D., A new compounding life distribution: The Weibull-Poisson distribution, J. Appl. Stat., 39, 1, 21-38 (2012) · Zbl 1514.62198 · doi:10.1080/02664763.2011.575126
[23] Mahdavi, A.; Kundu, D., A new method for generating distributions with an application to exponential distribution, Commun. Stat.-Theory Methods, 46, 13, 6543-6557 (2017) · Zbl 1391.62022 · doi:10.1080/03610926.2015.1130839
[24] Marinho, P.R.D., Silva, R.B., Bourguignon, M., Cordeiro, G.M. and Nadarajah, S. (2019). AdequacyModel: an R package for probability distributions and general purpose optimization. PLoS ONE. doi:10.1371/journal.pone.0221487.
[25] Maurya, SK; Nadarajah, S., Poisson generated family of distributions: A review, Sankhya B, 83, 2, 484-540 (2021) · Zbl 1493.60032 · doi:10.1007/s13571-020-00237-8
[26] Murthy, DNP; Xie, M.; Jiang, R., Weibull models Wiley series in probability and statistics (2004), Hoboken: Wiley, Hoboken · Zbl 1047.62095
[27] Nadarajah, S., Exponentiated Pareto distributions, Statistics, 39, 255-260 (2005) · Zbl 1070.62008 · doi:10.1080/02331880500065488
[28] Nadarajah, S.; Cancho, VG; Ortega, EM, The geometric exponential Poisson distribution, JISS, 22, 3, 355-380 (2013) · Zbl 1332.62050 · doi:10.1007/s10260-013-0230-y
[29] Nassar, M.; Nada, N., A new generalization of the Pareto-geometric distribution, J. Egypt. Math. Soc., 21, 2, 148-155 (2013) · Zbl 1286.60013 · doi:10.1016/j.joems.2013.01.003
[30] Plummer, M.; Best, N.; Cowles, K.; Vines, K., CODA: Convergence diagnosis and output analysis for MCMC, R news., 6, 7-11 (2006)
[31] Ristić, MM; Nadarajah, S., A new lifetime distribution, J. Stat. Comput. Simul., 84, 1, 135-150 (2014) · Zbl 1453.62347 · doi:10.1080/00949655.2012.697163
[32] Subhradev, SEN; Korkmaz, MC; Yousof, HM, The quasi xgamma-Poisson distribution: Properties and Application, Istatistik Journal of The Turkish Statistical Association, 11, 3, 65-76 (2018) · Zbl 1420.62439
[33] Weibull, W., A statistical distribution function of wide applicability, J. Appl. Mech., 18, 3, 293-297 (1951) · Zbl 0042.37903 · doi:10.1115/1.4010337
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.