×

A bivariate extension of the omega distribution for two-dimensional proportional data. (English) Zbl 1524.62245

Summary: When data generating mechanism generates two correlated data sets both defined on the unit interval, a bivariate probabilistic distribution defined on the unit square is needed for modelling the data. For this purpose, we give a Marshall-Olkin type bivariate extension of an omega distribution in this paper. This is in fact a bivariate unit-exponentiated-half-logistic distribution. We study its mathematical properties in detail. The distribution contains neither an exponential term nor any special function which complicates the computations. Maximum likelihood estimation method and its large sample inference are considered for model parameters. Alternatively, we also propose an expectation-maximization algorithm to compute the estimates. To see the performances of the proposed estimators and validate the theoretical results obtained for estimation, we present the results of a simulation study. Data fitting demonstrations show its applicability in modelling random proportions.

MSC:

62H10 Multivariate distribution of statistics
62E15 Exact distribution theory in statistics
60E05 Probability distributions: general theory

Software:

carData; car; LBFGS-B; R
Full Text: DOI

References:

[1] ALOTAIBI, R. M.—REZK, H. R.—GHOSH, I.—DEY, S.: Bivariate exponentiated half logistic distribution: properties and application, Commun. Statist. Theor. Meth. 50 (2021), 6099-6121. · Zbl 07532244
[2] ALSUBIE, A.—AKHTER, Z.—ATHAR, H.—ALAM, M.—AHMAD, A. E.—CORDEIRO, G. M.— AFIFY, A. Z.: On the omega distribution: Some properties and estimation, Mathematics 9 (2021), Art. ID 656.
[3] BALAKRISHNA, N.—SHIJI, K.: On a class of bivariate exponential distributions, Stat. Probab. Lett. 85 (2014), 153-160. · Zbl 1288.60014
[4] BALAKRISHNAN, N.—LAI, C. D.: Continuous Bivariate Distributions, Springer, Heidelberg, 2009. · Zbl 1267.62028
[5] BARRETO-SOUZA, W.—LEMONTE, A. J.: Bivariate Kumaraswamy distribution: properties and a new method to generate bivariate classes, Statistics 47 (2013), 1321-1342. · Zbl 1440.62179
[6] BYRD, R. H.—LU, P.—NOCEDAL, J.—ZHU, C.: A limited memory algorithm for bound constrained optimization, SIAM J. Sci. Comput. 16 (1995), 1190-1208. · Zbl 0836.65080
[7] CSöRGó, S.—WELSH, A. H.: Testing for exponential and and Marshall-Olkin distributions, J. Statist. Plann. Inference 23 (1989), 287-300. · Zbl 0685.62024
[8] DOMBI, J.—JONAS, T.—TOTH, E. Z.—ARVA, G.: The omega probability distribution and its applications in reliability theory, Quality and Reliability Engineering 35 (2019), 600-626.
[9] FOX, J.—WEISBERG, S.—PRICE, B. carData: Companion to Applied Regression Data Sets. R package version 3.0-4. (2020); https://CRAN.R-project.org/package=carData.
[10] GRADSHTEYN, I. S.—RYZHIK, I. M.: Table of Integrals, Series, and Products, 7th ed., Academic Press, San Diego, 2007. · Zbl 1208.65001
[11] KANG, S. B.—SEO, J.: Estimation in an exponentiated half logistic distribution under progressively Type-II censoring, Commun. Stat. Appl. Methods 18 (2011), 657-666.
[12] KUNDU, D.—DEY, A. K.: Estimating the parameters of the Marshall-Olkin bivariate Weibull distribution by EM algorithm, Comput. Statist. Data Anal. 53 (2009), 956-965. · Zbl 1452.62728
[13] KUNDU, D.—GUPTA, R. D.: Bivariate generalized exponential distribution, J. Multivariate Anal. 100 (2009), 581-593. · Zbl 1169.62046
[14] KUNDU, D.—GUPTA, R. D.: Modified Sarhan-Balakrishnan singular bivariate distribution, J. Statist. Plann. Inference 140 (2010), 526-538. · Zbl 1177.62074
[15] KUNDU, D.—GUPTA, A. K.: On bivariate inverse Weibull distribution, Braz. J. Probab. Stat. 31 (2017), 275-302. · Zbl 1370.62010
[16] LAI, C. D.: Generalized Weibull Distributions, Springer, Berlin, Heidelberg, 2013.
[17] MARSHALL, A. W.—OLKIN, I.: A multivariate exponential distribution, J. Amer. Statist. Assoc. 62 (1967), 30-44. · Zbl 0147.38106
[18] MUHAMMED, H. Z.: Bivariate inverse Weibull distribution, J. Stat. Comput. Simul. 86 (2016), 1-11. · Zbl 1510.62230
[19] MUHAMMED, H. Z.: On a bivariate generalized inverted Kumaraswamy distribution, Physica A 553 (2020), Art. ID 124281. · Zbl 1527.62035
[20] MURTHY, D. N. P.—XIE, M.—JIANG, R.: Weibull models, Wiley, New Jersey, 2004. · Zbl 1047.62095
[21] OKORIE, I. E.—NADARAJAH, S.: On the omega probability distribution, Qual. Reliab. Engng. Int. 35 (2019), 2045-2050.
[22] POPOVIć, B. V.—GENç, A. İ.—DOMMA, F.: Copula-based properties of the bivariate Dagum distribution, J. Comput. Appl. Math. 37 (2018), 6230-6251. · Zbl 1424.62013
[23] POPOVIć, B. V.—RISTIC, M. M.—GENç, A. İ.: Dependence properties of multivariate distributions with proportional hazard rate marginals, Applied Math. Modelling 77 (2020), 182-198. · Zbl 1443.62138
[24] R CORE TEAM: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2020); https://www.R-project.org/.
[25] RAO, G. S.—NAUDI, C. H. R.: Estimation of reliability in multicomponent stress strength based on exponentiated half logistic distribution, Journal of Statistics: Advances in Theory and Applications 9 (2013), 19-35.
[26] RASTOGI, M. K.—TRIPATHI, Y. M.: Parameter and reliability estimation for an exponentiated half-logistic distribution under progressive type II censoring, J. Stat. Comput. Simul. 84 (2014), 1711-1727. · Zbl 1453.62696
[27] SABOOR, A.—BAKOUCH, H. S.—MOALA, F. A.—HUSSAIN, S.: Properties and methods of estimation for a bivariate exponentiated Fréchet distribution, Math. Slovaca 70 (2020), 1211-1230. · Zbl 1478.60059
[28] SARHAN, A.—BALAKRISHNAN, N.: A new class of bivariate distribution and its mixture, J. Multivariate Anal. 98 (2007), 1508-1527. · Zbl 1116.62060
[29] SEO, J. I.—KANG, S. B.: Notes on the exponentiated half logistic distribution, Applied Math. Modelling 39 (2015), 6491-6500. · Zbl 1443.62047
[30] STUTE, W.—MANTEIGA, W. G.—QUINDMIL, M. P.: Bootstrap based goodness-of-fit-tests, Metrika 40 (1993), 243-256. · Zbl 0770.62016
[31] TOPP, C. W.—LEONE, F. C.: A family of J-shaped frequency functions, JASA 50 (1955), 209-219. · Zbl 0064.13601
[32] WANG, F. K.: A new model with bathtub-shaped failure rate using an additive Burr XII distribution, Reliab. Eng. Syst. Saf. 70 (2000), 305-312.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.