×

Discontinuous Galerkin methods for the chemotaxis and haptotaxis models. (English) Zbl 1157.65449

Summary: First we formulate and compare three different discontinuous interior penalty Galerkin methods for the 2D Keller-Segel chemotaxis model. The Keller-Segel chemotaxis model is the important starting step in the modeling of a real biological system. We show in the numerical tests that two of the proposed methods fail to give accurate, oscillation-free solutions.
Next, we consider the application of the successful method for the Keller-Segel model to the simulation of the more realistic, and closely related haptotaxis model of tumor invasion into healthy tissues.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35K57 Reaction-diffusion equations
92E20 Classical flows, reactions, etc. in chemistry
92C17 Cell movement (chemotaxis, etc.)
92-08 Computational methods for problems pertaining to biology

Software:

Chemotaxis
Full Text: DOI

References:

[1] Adler, J., Chemotaxis in bacteria, Ann. Rev. Biochem., 44, 341-356 (1975)
[2] Aizinger, V.; Dawson, C.; Cockburn, B.; Castillo, P., Local discontinuous Galerkin methods for contaminant transport, Adv. Water Resour., 24, 73-87 (2000)
[3] Anderson, A. R.A., A hybrid mathematical model of solid tumour invasion: The importance of cell adhesion, Math. Med. Biol. IMA J., 22, 163-186 (2005) · Zbl 1073.92013
[4] Arnold, D. N., An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19, 742-760 (1982) · Zbl 0482.65060
[5] Baker, G. A.; Jureidini, W. N.; Karakashian, O. A., Piecewise solenoidal vector fields and the Stokes problem, SIAM J. Numer. Anal., 27, 1466-1485 (1990) · Zbl 0719.76047
[6] Bonner, J. T., The Cellular Slime Molds (1967), Princeton University Press: Princeton University Press Princeton, New Jersey
[7] Budrene, E. O.; Berg, H. C., Complex patterns formed by motile cells of escherichia coli, Nature, 349, 630-633 (1991)
[8] Budrene, E. O.; Berg, H. C., Dynamics of formation of symmetrical patterns by chemotactic bacteria, Nature, 376, 49-53 (1995)
[9] Carter, S. B., Principles of cell motility: The direction of cell movement and cancer invasion, Nature, 208, 1183-1187 (1965)
[10] Carter, S. B., Haptotaxis and the mechanism of cell motility, Nature, 213, 256-260 (1967)
[11] A. Chertock, A. Kurganov, A positivity preserving central-upwind scheme for chemotaxis and haptotaxis models, Numer. Math. (submitted for publication); A. Chertock, A. Kurganov, A positivity preserving central-upwind scheme for chemotaxis and haptotaxis models, Numer. Math. (submitted for publication) · Zbl 1307.92045
[12] Childress, S.; Percus, J. K., Nonlinear aspects of chemotaxis, Math. Biosc., 56, 217-237 (1981) · Zbl 0481.92010
[13] (Cockburn, B.; Karniadakis, G. E.; Shu, C.-W., First International Symposium on Discontinuous Galerkin Methods. First International Symposium on Discontinuous Galerkin Methods, Lecture Notes in Computational Science and Engineering, vol. 11 (2000), Springer-Verlag) · Zbl 0935.00043
[14] Cockburn, B.; Shu, C.-W., The local discontinuous Galerkin method for convection-diffusion systems, SIAM J. Numer. Anal., 35, 2440-2463 (1998) · Zbl 0927.65118
[15] Cohen, M. H.; Robertson, A., Wave propagation in the early stages of aggregation of cellular slime molds, J. Theor. Biol., 31, 101-118 (1971)
[16] Kubatko, E. J.; Westerink, J. J.; Dawson, C., hp Discontinuous Galerkin methods for advection-dominated problems in shallow water, Comp. Meth. Appl. Mech. Eng., 196, 437-451 (2006) · Zbl 1120.76348
[17] Dawson, C.; Sun, S.; Wheeler, M., Compatible algorithms for coupled flow and transport, Comput. Meth. Appl. Mech. Engng, 193, 2565-2580 (2004) · Zbl 1067.76565
[18] Douglas, J.; Dupont, T., Lecture Notes in Physics, vol. 58 (1976), Springer-Verlag, ch. Interior penalty procedures for elliptic and parabolic Galerkin methods
[19] Y. Epshteyn, A. Kurganov, New Interior Penalty Discontinuous Galerkin Methods for the Keller-Segel Chemotaxis Model, CNA report, (2007) (submitted for publication); Y. Epshteyn, A. Kurganov, New Interior Penalty Discontinuous Galerkin Methods for the Keller-Segel Chemotaxis Model, CNA report, (2007) (submitted for publication) · Zbl 1183.92010
[20] Epshteyn, Y.; Rivière, B., Estimation of penalty parameters for symmetric interior penalty Galerkin methods, J. Comput. Appl. Math., 206, 843-872 (2006) · Zbl 1141.65078
[21] Epshteyn, Y.; Rivière, B., On the solution of incompressible two-phase flow by a p-version discontinuous Galerkin method, Comm. Numer. Methods Engrg., 22, 741-751 (2006) · Zbl 1115.76047
[22] Filbet, F., A finite volume scheme for the patlak-keller-segel chemotaxis model, Numer. Math., 104, 457-488 (2006) · Zbl 1098.92006
[23] Girault, V.; Rivière, B.; Wheeler, M., A discontinuous Galerkin method with non-overlapping domain decomposition for the Stokes and Navier-Stokes problems, Math. Comp., 74, 53-84 (2005) · Zbl 1057.35029
[24] Gottlieb, S.; Shu, C.-W.; Tadmor, E., High order time discretization methods with the strong stability property, SIAM Review, 43, 89-112 (2001) · Zbl 0967.65098
[25] Horstmann, D., From 1970 until now: The keller-segel model in chemotaxis and its consequences i, Jahresber. DMV, 105, 103-165 (2003) · Zbl 1071.35001
[26] Horstmann, D., From 1970 until now: The keller-segel model in chemotaxis and its consequences ii, Jahresber. DMV, 106, 51-69 (2004) · Zbl 1072.35007
[27] Karakashian, O.; Pascal, F., A posteriori error estimates for a discontinuous Galerkin approximation of second order elliptic problems, SIAM J. Numer. Anal, 41, 2374-2399 (2003) · Zbl 1058.65120
[28] Kurganov, A.; Lin, C.-T., On the reduction of numerical dissipation in central-upwind schemes, Commun. Comput. Phys., 2, 141-163 (2007) · Zbl 1164.65455
[29] Kurganov, A.; Noelle, S.; Petrova, G., Semi-discrete central-upwind schemes for hyperbolic conservation laws and hamilton-jacobi equations, SIAM J. Sci. Comput., 23, 707-740 (2001) · Zbl 0998.65091
[30] Kurganov, A.; Petrova, G., Central-upwind schemes on triangular grids for hyperbolic systems of conservation laws, Numer. Methods Partial Differential Equations, 21, 536-552 (2005) · Zbl 1071.65122
[31] Marrocco, A., 2d simulation of chemotaxis bacteria aggregation, M2AN Math. Model. Numer. Anal., 37, 617-630 (2003) · Zbl 1065.92006
[32] Prescott, L. M.; Harley, J. P.; Klein, D., Microbiology (1996), Wm. C. Brown Publishers: Wm. C. Brown Publishers Chicago, London
[33] J. Proft, B. Rivière, Analytical and numerical study of diffusive fluxes for transport equations with near-degenerate coefficients, University of Pittsburgh report, (2007) (submitted for publication); J. Proft, B. Rivière, Analytical and numerical study of diffusive fluxes for transport equations with near-degenerate coefficients, University of Pittsburgh report, (2007) (submitted for publication)
[34] Qiu, J.; Khoo, B.; Shu, C. W., A numerical study for the performance of the Runge-Kutta discontinuous Galerkin method based on different numerical fluxes, 212 (2005)
[35] Rivière, B.; Wheeler, M.; Girault, V., A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems, SIAM J. Numer. Anal., 39, 902-931 (2001) · Zbl 1010.65045
[36] Sun, S.; Wheeler, M. F., Symmetric and nonsymmetric discontinuous Galerkin methods for reactive transport in porous media, SIAM J. Numer. Anal., 43, 195-219 (2005) · Zbl 1086.76043
[37] Tyson, R.; Lubkin, S. R.; Murray, J. D., A minimal mechanism for bacterial pattern formation, Proc. R. Soc. Lond. B, 266, 299-304 (1999)
[38] Tyson, R.; Stern, L. G.; LeVeque, R. J., Fractional step methods applied to a chemotaxis model, J. Math. Biol., 41, 455-475 (2000) · Zbl 1002.92003
[39] C. Walker, G.F. Webb, Global Existence of classical solutions for a haptotaxis model, preprint; C. Walker, G.F. Webb, Global Existence of classical solutions for a haptotaxis model, preprint · Zbl 1120.92024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.