×

Spatial and spatio-temporal patterns in a cell-haptotaxis model. (English) Zbl 0716.92004

Summary: We investigate a cell-haptotaxis model for the generation of spatial and spatio-temporal patterns in one dimension. We analyze the steady state problem for specific boundary conditions and show the existence of spatially heterogeneous steady states. A linear analysis shows that stability is lost through a Hopf bifurcation. We carry out a nonlinear multi-time scale perturbation procedure to study the evolution of the resulting spatio-temporal patterns. We also analyze the model in a parameter domain wherein it exhibits a singular dispersion relation.

MSC:

92C15 Developmental biology, pattern formation
35Q92 PDEs in connection with biology, chemistry and other natural sciences
92C05 Biophysics
Full Text: DOI

References:

[1] Turing, M. A.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond., B 237, 37-73 (1952) · Zbl 1403.92034 · doi:10.1098/rstb.1952.0012
[2] Murray, J. D.: A pre-pattern formation mechanism for animal coat markings, J. Theor. Biol. 88, 161-199 (1981) · doi:10.1016/0022-5193(81)90334-9
[3] Meinhardt, H.: Models of biological pattern formation. London: Academic Press 1982
[4] Wolpert, L.: Positional information and the spatial pattern of cellular differentiation, J. Theor. Biol. 25, 1-47 (1969) · doi:10.1016/S0022-5193(69)80016-0
[5] Oster, G. F., Murray, J. D., Harris, A. K.: Mechanical aspects of mesenchymal morphogenesis. J. Embryol. Exp. Morph. 78, 83-125 (1983) · Zbl 0533.92002
[6] Oster, G. F., Murray, J. D., Maini, P. K.: A model for chondrogenic condensations in the developing limb: the role of extracellular matrix and cell tractions. J. Embryol. Exp. Morph. 89, 93-112 (1985)
[7] Murray, J. D., Oster, G. F.: Cell traction models for generating pattern and form in morphogenesis. J. Math. Biol. 19, 265-279 (1984) · Zbl 0536.92001
[8] Perelson, A. S., Maini, P. K., Murray, J. D., Hyman, J. M., Oster, G. F.: Nonlinear pattern selection in a mechanical model for morphogenesis. J. Math. Biol. 24, 525-541 (1986) · Zbl 0597.92003 · doi:10.1007/BF00275682
[9] Maini, P. K., Murray, J. D.: A nonlinear analysis of a mechanical model for biological pattern formation. SIAM J. Appl. Math. 48, 1064-1072 (1988) · Zbl 0667.92001 · doi:10.1137/0148062
[10] Haken, H.: Synergetics. An introduction. Nonequilibrium phase transitions and self-organisation in physics, chemistry and biology. Berlin Heidelberg New York: Springer 1977 · Zbl 0355.93003
[11] Fife, P. C.: Mathematical aspects of reacting and diffusing systems. Berlin Heidelberg New York: Springer 1979 · Zbl 0403.92004
[12] Keener, J. P.: Principles of applied mathematics, transformation and approximation. Reading, Mass.: Addison-Wesley 1988 · Zbl 0649.00002
[13] Britton, N. F.: A singular dispersion relation arising in a caricature of a model for morphogensis. J. Math. Biol. 26, 387-403 (1988) · Zbl 0714.92004
[14] Matkowsky, B. J.: A simple non-linear dynamic stability problem. Bull. Am. Math. Soc. 76, 620-625 (1970) · Zbl 0195.11102 · doi:10.1090/S0002-9904-1970-12461-2
[15] Grindrod, P., Sinha, S., Murray, J. D.: Steady state spatial patterns in a cell-chemotaxis model. I.M.A. J. Math. Appl. Med. Biol. (in press) · Zbl 0674.92009
[16] Goldwasser, L., Maini, P. K., Murray, J. D.: Splitting of cell clusters and bifurcation of bryozoan branches. J. Theor. Biol. 137, 271-279 (1989) · doi:10.1016/S0022-5193(89)80073-6
[17] Stewartson, K., Stuart, J. T.: A non-linear instability theory for a wave system in plane Poiseuille flow. J. Fluid Mech. 48, 529-545 (1971) · Zbl 0222.76045 · doi:10.1017/S0022112071001733
[18] Harris, A., Stopak, D., Wild, P.: Fibroblast traction as a mechanism for collagen morphogenesis. Nature 290, 249-251 (1981) · doi:10.1038/290249a0
[19] Harris, A., Wild, P., Stopak, D., Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208, 177-179 (1980) · doi:10.1126/science.6987736
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.