×

BrepMFR: enhancing machining feature recognition in B-rep models through deep learning and domain adaptation. (English) Zbl 07873100

Summary: Feature Recognition (FR) plays a crucial role in modern digital manufacturing, serving as a key technology for integrating Computer-Aided Design (CAD), Computer-Aided Process Planning (CAPP) and Computer-Aided Manufacturing (CAM) systems. The emergence of deep learning methods in recent years offers a new approach to address challenges in recognizing highly intersecting features with complex geometric shapes. However, due to the high cost of labeling real CAD models, neural networks are usually trained on computer-synthesized datasets, resulting in noticeable performance degradation when applied to real-world CAD models. Therefore, we propose a novel deep learning network, BrepMFR, designed for Machining Feature Recognition (MFR) from Boundary Representation (B-rep) models. We transform the original B-rep model into a graph representation as network-friendly input, incorporating local geometric shape and global topological relationships. Leveraging a graph neural network based on Transformer architecture and graph attention mechanism, we extract the feature representation of high-level semantic information to achieve machining feature recognition. Additionally, employing a two-step training strategy under a transfer learning framework, we enhance BrepMFR’s generalization ability by adapting synthetic training data to real CAD data. Furthermore, we establish a large-scale synthetic CAD model dataset inclusive of 24 typical machining features, showcasing diversity in geometry that closely mirrors real-world mechanical engineering scenarios. Extensive experiments across various datasets demonstrate that BrepMFR achieves state-of-the-art machining feature recognition accuracy and performs effectively on CAD models of real-world mechanical parts.

MSC:

65Dxx Numerical approximation and computational geometry (primarily algorithms)
Full Text: DOI

References:

[1] Angrish, A.; Craver, B.; Starly, B., “fabsearch”: a 3d cad model-based search engine for sourcing manufacturing services, J. Comput. Inf. Sci. Eng., 19, Article 041006 pp., 2019
[2] Ben-David, S.; Blitzer, J.; Crammer, K.; Kulesza, A.; Pereira, F.; Vaughan, J. W., A theory of learning from different domains, Mach. Learn., 79, 151-175, 2010 · Zbl 1470.68081
[3] Ben-David, S.; Blitzer, J.; Crammer, K.; Pereira, F., Analysis of representations for domain adaptation, (Advances in Neural Information Processing Systems, 2006)
[4] Brousseau, E.; Dimov, S.; Setchi, R., Knowledge acquisition techniques for feature recognition in cad models, J. Intell. Manuf., 19, 21-32, 2008
[5] Cao, W.; Robinson, T.; Hua, Y.; Boussuge, F.; Colligan, A. R.; Pan, W., Graph representation of 3d cad models for machining feature recognition with deep learning, (International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2020, American Society of Mechanical Engineers), p. V11AT11A003
[6] Chan, A.; Case, K., Process planning by recognizing and learning machining features, Int. J. Comput. Integr. Manuf., 7, 77-99, 1994
[7] Colligan, A. R.; Robinson, T. T.; Nolan, D. C.; Hua, Y.; Cao, W., Hierarchical cadnet: learning from b-reps for machining feature recognition, Comput. Aided Des., 147, Article 103226 pp., 2022
[8] Dekhtiar, J.; Durupt, A.; Bricogne, M.; Eynard, B.; Rowson, H.; Kiritsis, D., Deep learning for big data applications in cad and plm-research review, opportunities and case study, Comput. Ind., 100, 227-243, 2018
[9] Donaldson, I. A.; Corney, J. R., Rule-based feature recognition for 2· 5d machined components, Int. J. Comput. Integr. Manuf., 6, 51-64, 1993
[10] Dong, J.; Vijayan, S., Features extraction with the consideration of manufacturing processes, Int. J. Prod. Res., 35, 2135-2156, 1997 · Zbl 0945.90587
[11] Fu, M.; Ong, S. K.; Lu, W. F.; Lee, I.; Nee, A. Y., An approach to identify design and manufacturing features from a data exchanged part model, Comput. Aided Des., 35, 979-993, 2003
[12] Ganin, Y.; Lempitsky, V., Unsupervised domain adaptation by backpropagation, (Proceedings of the 32nd International Conference on Machine Learning, 2015)
[13] Gao, S.; Shah, J. J., Automatic recognition of interacting machining features based on minimal condition subgraph, Comput. Aided Des., 30, 727-739, 1998 · Zbl 1053.68672
[14] Geng, W.; Chen, Z.; He, K.; Wu, Y., Feature recognition and volume generation of uncut regions for electrical discharge machining, Adv. Eng. Softw., 91, 51-62, 2016
[15] Han, J.; Regli, W. C.; Brooks, S., Hint-based reasoning for feature recognition: status report, (International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 1997, American Society of Mechanical Engineers), p. V005T32A020
[16] Henderson, M. R., Extraction of Feature Information from Three-Dimensional CAD Data, 1984, Purdue University
[17] Huang, Z.; Yip-Hoi, D., High-level feature recognition using feature relationship graphs, Comput. Aided Des., 34, 561-582, 2002 · Zbl 1206.68271
[18] Jayaraman, P. K.; Sanghi, A.; Lambourne, J. G.; Willis, K. D.; Davies, T.; Shayani, H.; Morris, N., Uv-net: learning from boundary representations, (Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021), 11703-11712
[19] Jia, J. L.; Zhang, S. W.; Cao, Y. R.; Qi, X. L.; WeZhu, Machining feature recognition method based on improved mesh neural network, Iran. J. Sci. Technol. Trans. Mech. Eng., 47, 2045-2058, 2023
[20] Joshi, S.; Chang, T. C., Graph-based heuristics for recognition of machined features from a 3d solid model, Comput. Aided Des., 20, 58-66, 1988 · Zbl 0656.65014
[21] Kim, Y. S.; Wilde, D., A convergent convex decomposition of polyhedral objects, J. Mech. Des., 114, 468-476, 1992
[22] Koch, S.; Matveev, A.; Jiang, Z.; Williams, F.; Artemov, A.; Burnaev, E.; Alexa, M.; Zorin, D.; Panozzo, D., Abc: a big cad model dataset for geometric deep learning, (Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019), 9601-9611
[23] Lambourne, J. G.; Willis, K. D.; Jayaraman, P. K.; Sanghi, A.; Meltzer, P.; Shayani, H., Brepnet: a topological message passing system for solid models, (Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021), 12773-12782
[24] Lee, C. Y.; Batra, T.; Baig, M. H.; Ulbricht, D., Sliced Wasserstein discrepancy for unsupervised domain adaptation, (Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019), 10285-10295
[25] Lee, H.; Lee, J.; Kim, H.; Mun, D., Dataset and method for deep learning-based reconstruction of 3d cad models containing machining features for mechanical parts, J. Comput. Des. Eng., 9, 114-127, 2021
[26] Lee, J.; Yeo, C.; Cheon, S. U.; Park, J. H.; Mun, D., Brepgat: graph neural network to segment machining feature faces in a b-rep model, J. Comput. Des. Eng., 10, 2384-2400, 2023
[27] Lei, R.; Wu, H.; Peng, Y., Mfpointnet: a point cloud-based neural network using selective downsampling layer for machining feature recognition, Dianji Yu Kongzhi Xuebao, 10, 1165, 2022
[28] Liu, S. C.; Gonzalez, M.; Chen, J. G., Development of an automatic part feature extraction and classification system taking cad data as input, Comput. Ind., 29, 137-150, 1996
[29] Long, M.; Zhu, H.; Wang, J.; Jordan, M. I., Deep transfer learning with joint adaptation networks, (Proceedings of the 34th International Conference on Machine Learning, 2017, PMLR), 2208-2217
[30] Ning, F.; Shi, Y.; Cai, M.; Xu, W., Part machining feature recognition based on a deep learning method, J. Intell. Manuf., 34, 809-821, 2023
[31] Pan, S. J.; Yang, Q., A survey on transfer learning, IEEE Trans. Knowl. Data Eng., 22, 1345-1359, 2009
[32] Peddireddy, D.; Fu, X.; Shankar, A.; Wang, H.; Joung, B. G.; Aggarwal, V.; Sutherland, J. W.; Jun, M. B.G., Identifying manufacturability and machining processes using deep 3d convolutional networks, J. Manuf. Process., 64, 1336-1348, 2021
[33] Prabhakar, S.; Henderson, M. R., Automatic form-feature recognition using neural-network-based techniques on boundary representations of solid models, Comput. Aided Des., 24, 381-393, 1992 · Zbl 0800.68982
[34] Rea, H.; Sung, R.; Corney, J.; Clark, D.; Taylor, N., Interpreting three-dimensional shape distributions, Proc. Inst. Mech. Eng., Part C, J. Mech. Eng. Sci., 219, 553-566, 2005
[35] Roy, B., Transitivité et connexité, C. R. Acad. Sci. Paris, 249, 182, 1959 · Zbl 0092.15902
[36] Shi, P.; Qi, Q.; Qin, Y.; Scott, P. J.; Jiang, X., Highly interacting machining feature recognition via small sample learning, Robot. Comput.-Integr. Manuf., 73, Article 102260 pp., 2022
[37] Shi, Y.; Zhang, Y.; Harik, R., Manufacturing feature recognition with a 2d convolutional neural network, CIRP J. Manuf. Sci. Technol., 30, 36-57, 2020
[38] Sunil, V.; Pande, S., Automatic recognition of machining features using artificial neural networks, Int. J. Adv. Manuf. Technol., 41, 932-947, 2009
[39] Takaishi, I.; Kanai, S.; Date, H.; Takashima, H., Free-form feature classification for finite element meshing based on shape descriptors and machine learning, Comput-Aided Des. Appl., 17, 1049-1066, 2020
[40] Tang, K.; Woo, T., Algorithmic aspects of alternating sum of volumes. part 1: Data structure and difference operation, Comput. Aided Des., 23, 357-366, 1991 · Zbl 0731.65132
[41] Tzeng, E.; Hoffman, J.; Saenko, K.; Darrell, T., Adversarial discriminative domain adaptation, (Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017), 7167-7176
[42] Vandenbrande, J. H.; Requicha, A. A., Spatial reasoning for the automatic recognition of machinable features in solid models, IEEE Trans. Pattern Anal. Mach. Intell., 15, 1269-1285, 1993
[43] Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser, Ł.; Polosukhin, I., Attention is all you need, Adv. Neural Inf. Process. Syst., 30, 2017
[44] Vosniakos, G.; Davies, B., A shape feature recognition framework and its application to holes in prismatic parts, Int. J. Adv. Manuf. Technol., 8, 345-351, 1993
[45] Wang, M.; Deng, W., Deep visual domain adaptation: a survey, Neurocomputing, 312, 135-153, 2018
[46] Warshall, S., A theorem on Boolean matrices, J. ACM, 9, 11-12, 1962 · Zbl 0118.33104
[47] Willis, K. D.; Pu, Y.; Luo, J.; Chu, H.; Du, T.; Lambourne, J. G.; Solar-Lezama, A.; Matusik, W., Fusion 360 gallery: a dataset and environment for programmatic cad construction from human design sequences, ACM Trans. Graph., 40, 2021
[48] Woo, Y., Feature extraction by volume decomposition, (Proceedings of Conference on CAD/CAM in Mechanical Engineering, 1982), 76-94
[49] Woo, Y.; Sakurai, H., Recognition of maximal features by volume decomposition, Comput. Aided Des., 34, 195-207, 2002
[50] Wu, H.; Lei, R.; Peng, Y.; Gao, L., Aagnet: a graph neural network towards multi-task machining feature recognition, Robot. Comput.-Integr. Manuf., 86, Article 102661 pp., 2024
[51] Ying, C.; Cai, T.; Luo, S.; Zheng, S.; Ke, G.; He, D.; Shen, Y.; Liu, T. Y., Do transformers really perform badly for graph representation?, Adv. Neural Inf. Process. Syst., 34, 28877-28888, 2021
[52] Yuen, C.; Venuvinod, P., Geometric feature recognition: coping with the complexity and infinite variety of features, Int. J. Comput. Integr. Manuf., 12, 439-452, 1999
[53] Zehtaban, L.; Roller, D., Automated rule-based system for opitz feature recognition and code generation from step, Comput-Aided Des. Appl., 13, 309-319, 2016
[54] Zhang, C.; Zhao, Q.; Wang, Y., Transferable attention networks for adversarial domain adaptation, Inf. Sci., 539, 422-433, 2020
[55] Zhang, Y.; Luo, X.; Zhang, B.; Zhang, S., Semantic approach to the automatic recognition of machining features, Int. J. Adv. Manuf. Technol., 89, 417-437, 2017
[56] Zhang, Z.; Jaiswal, P.; Rai, R., Featurenet: machining feature recognition based on 3d convolution neural network, Comput. Aided Des., 101, 12-22, 2018
[57] Zhao, J.; Li, C.; Wen, Q.; Wang, Y.; Liu, Y.; Sun, H.; Xie, X.; Ye, Y., Gophormer: ego-graph transformer for node classification, 2021
[58] Zhuang, F.; Cheng, X.; Luo, P.; Pan, S. J.; He, Q., Supervised representation learning: transfer learning with deep autoencoders, (Proceedings of the 24th International Conference on Artificial Intelligence, 2015), 4119-4125
[59] Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q., A comprehensive survey on transfer learning, Proc. IEEE, 109, 43-76, 2020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.