×

The geometry of synchronization problems and learning group actions. (English) Zbl 1456.05105

Summary: We develop a geometric framework, based on the classical theory of fibre bundles, to characterize the cohomological nature of a large class of synchronization-type problems in the context of graph inference and combinatorial optimization. We identify each synchronization problem in topological group \(G\) on connected graph \(\Gamma\) with a flat principal \(G\)-bundle over \(\Gamma\), thus establishing a classification result for synchronization problems using the representation variety of the fundamental group of \(\Gamma\) into \(G\). We then develop a twisted Hodge theory on flat vector bundles associated with these flat principal \(G\)-bundles, and provide a geometric realization of the graph connection Laplacian as the lowest-degree Hodge Laplacian in the twisted de Rham-Hodge cochain complex. Motivated by these geometric intuitions, we propose to study the problem of learning group actions – partitioning a collection of objects based on the local synchronizability of pairwise correspondence relations – and provide a heuristic synchronization-based algorithm for solving this type of problems. We demonstrate the efficacy of this algorithm on simulated and real datasets.

MSC:

05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
62H30 Classification and discrimination; cluster analysis (statistical aspects)
57R22 Topology of vector bundles and fiber bundles
58A14 Hodge theory in global analysis
28D05 Measure-preserving transformations
35B65 Smoothness and regularity of solutions to PDEs
35J60 Nonlinear elliptic equations
49N90 Applications of optimal control and differential games
49Q20 Variational problems in a geometric measure-theoretic setting

Software:

t-SNE; molaR

References:

[1] Aigerman, N.; Poranne, R.; Lipman, Y., Seamless surface mappings. ACM Trans. Graph. (TOG), 34, 4, 72 (2015) · Zbl 1334.68234
[2] Al-Aifari, R.; Daubechies, I.; Lipman, Y., Continuous procrustes distance between two surfaces, Commun. Pure Appl. Math., 66, 6, 934-964 (2013) · Zbl 1276.68157 · doi:10.1002/cpa.21444
[3] Alon, N.; Karp, RM; Peleg, D.; West, D., A graph-theoretic game and its application to the k-server problem, SIAM J. Comput., 24, 1, 78-100 (1995) · Zbl 0818.90147
[4] Angenent, S.; Haker, S.; Tannenbaum, A.; Kikinis, R., On the Laplace-Beltrami operator and brain surface flattening, IEEE Trans. Med. Imaging, 18, 8, 700-711 (1999) · doi:10.1109/42.796283
[5] Anosov, D.V., Bolibruch, A.A.: The Riemann-Hilbert problem. Aspects of Mathematics, vol. 22. Vieweg, Braunschweig (1994) · Zbl 0801.34002
[6] Arnold, DN; Falk, RS; Winther, R., Finite element exterior calculus, homological techniques, and applications, Acta Numer., 15, 1-155 (2006) · Zbl 1185.65204
[7] Atiyah, M.F., Bott, R.: The Yang-Mills equations over Riemann surfaces. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 308(1505), 523-615 (1983) · Zbl 0509.14014
[8] Aubry, M., Schlickewei, U., Cremers, D.: The wave kernel signature: a quantum mechanical approach to shape analysis. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1626-1633 (2011). doi:10.1109/ICCVW.2011.6130444
[9] Bajaj, C., Gao, T., He, Z., Huang, Q., Liang, Z.: SMAC: simultaneous mapping and clustering using spectral decompositions. In: Proceedings of the 35th International Conference on Machine Learning, vol. 80, pp. 324-333 (2018). http://proceedings.mlr.press/v80/bajaj18a.html
[10] Bandeira, A.S., Charikar, M., Singer, A., Zhu, A.: Multireference alignment using semidefinite programming. In: Proceedings of the 5th Conference on Innovations in Theoretical Computer Science, pp. 459-470. ACM, New York (2014) · Zbl 1364.94108
[11] Bandeira, A.S., Chen, Y., Singer, A.: Non-unique Games over Compact Groups and Orientation Estimation in Cryo-EM (2015). arXiv:1505.03840
[12] Bandeira, A.S., Kennedy, C., Singer, A.: Approximating the Little Grothendieck Problem over the Orthogonal and Unitary Groups. Mathematical Programming, pp. 1-43 (2016). doi:10.1007/s10107-016-0993-7 · Zbl 1356.90101
[13] Bandeira, AS; Singer, A.; Spielman, DA, A cheeger inequality for the graph connection Laplacian, SIAM J. Matrix Anal. Appl., 34, 4, 1611-1630 (2013) · Zbl 1287.05081
[14] Bandelt, HJ; Chepoi, V., Metric graph theory and geometry: a survey, Contemp. Math., 453, 49-86 (2008) · Zbl 1169.05015
[15] Belkin, M.; Niyogi, P., Laplacian eigenmaps for dimensionality reduction and data representation, Neural Comput., 15, 6, 1373-1396 (2003) · Zbl 1085.68119 · doi:10.1162/089976603321780317
[16] Belkin, M.; Niyogi, P., Semi-supervised learning on Riemannian manifolds, Mach. Learn., 56, 1-3, 209-239 (2004) · Zbl 1089.68086
[17] Blitzstein, J.; Diaconis, P., A sequential importance sampling algorithm for generating random graphs with prescribed degrees, Internet Math., 6, 4, 489-522 (2010) · Zbl 1238.60084
[18] Bobenko, AI; Sullivan, JM; Schröder, P.; Ziegler, G., Discrete Differential Geometry (2008), Heidelberg: Springer, Heidelberg · Zbl 1132.53004
[19] Bolibrukh, AA, The Riemann-Hilbert problem, Russ. Math. Surv., 45, 2, 11-58 (1990) · Zbl 0706.34005
[20] Bott, R., Tu, L.W.: Differential Forms in Algebraic Topology. Graduate Texts in Mathematics, vol. 82. Springer, New York (1982) · Zbl 0496.55001
[21] Boumal, N.; Singer, A.; Absil, PA; Blondel, VD, Cramér-Rao bounds for synchronization of rotations, Inf. Inference, 3, 1, 1-39 (2014) · Zbl 1308.94041
[22] Boyer, DM, Relief index of second mandibular molars is a correlate of diet among prosimian primates and other euarchontan mammals, J. Hum. Evol., 55, 6, 1118-1137 (2008)
[23] Boyer, D.M., Lipman, Y., St. Clair, E., Puente, J., Patel, B.A., Funkhouser, T., Jernvall, J., Daubechies, I.: Algorithms to automatically quantify the geometric similarity of anatomical surfaces. Proc. Natl. Acad. Sci. U.S.A. 108(45), 18,221-18,226 (2011). doi:10.1073/pnas.1112822108
[24] Boyer, DM; Puente, J.; Gladman, JT; Glynn, C.; Mukherjee, S.; Yapuncich, GS; Daubechies, I., A new fully automated approach for aligning and comparing shapes, Anat. Rec., 298, 1, 249-276 (2015)
[25] Bröcker, T., tom Dieck, T.: Representations of Compact Lie Groups. Graduate Texts in Mathematics. Springer, Heidelberg (2003)
[26] Bronstein, AM; Bronstein, MM; Kimmel, R., Numerical Geometry of Non-Rigid Shapes (2008), New York: Springer, New York · Zbl 1178.68608
[27] Bronstein, M.M., Kokkinos, I.: Scale-invariant heat kernel signatures for non-rigid shape recognition. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1704-1711. IEEE (2010)
[28] Brown, R.: Groupoids and van Kampen’s Theorem. Proc. Lond. Math. Soc. (3) 17, pp. 385-401. Citeseer (1967) · Zbl 0149.20002
[29] Brown, R., Higgins, P., Sivera, R.: Nonabelian Algebraic Topology: Filtered Spaces, Crossed Complexes, Cubical Homotopy Groupoids. EMS Series of Lectures in Mathematics. European Mathematical Society, Zurich (2011) · Zbl 1237.55001
[30] Brylinski, JL, Loop Spaces, Characteristic Classes and Geometric Quantization (2007), New York: Springer, New York · Zbl 1136.55001
[31] Bunn, JM; Boyer, DM; Lipman, Y.; St Clair, EM; Jernvall, J.; Daubechies, I., Comparing Dirichlet normal surface energy of tooth crowns, a new technique of molar shape quantification for dietary inference, with previous methods in isolation and in combination, Am. J. Phys. Anthropol., 145, 2, 247-261 (2011)
[32] Candogan, O.; Menache, I.; Ozdaglar, A.; Parrilo, PA, Flows and decompositions of games: harmonic and potential games, Math. Oper. Res., 36, 3, 474-503 (2011) · Zbl 1239.91006 · doi:10.1287/moor.1110.0500
[33] Carlsson, G.; Zomorodian, A.; Collins, A.; Guibas, LJ, Persistence barcodes for shapes, Int. J. Shape Model., 11, 2, 149-187 (2005) · Zbl 1092.68688
[34] Chaudhury, KN; Khoo, Y.; Singer, A., Global registration of multiple point clouds using semidefinite programming, SIAM J. Optim., 25, 1, 468-501 (2015) · Zbl 1322.90058
[35] Cheeger, J.: A lower bound for the smallest eigenvalue of the Laplacian. In: Problems in Analysis (Papers dedicated to Salomon Bochner, 1969), pp. 195-199. Princeton University Press, Princeton (1970) · Zbl 0212.44903
[36] Chen, Y., Guibas, L., Huang, Q.: Near-optimal joint object matching via convex relaxation. In: Jebara, T., Xing, E.P. (eds.) Proceedings of the 31st International Conference on Machine Learning (ICML-14) (JMLR Workshop and Conference Proceedings ), pp. 100-108 (2014)
[37] Chentsov, NN, A systematic theory of exponential families of probability distributions, Theor. Probab. Appl., 11, 425-425 (1966) · Zbl 0209.49704
[38] Chung, F.R.: Spectral Graph Theory No. 92. CBMS Regional Conference Series in Mathematics. American Mathematical Society, Providence (1997)
[39] Chung, FR, Four proofs for the Cheeger inequality and graph partition algorithms, Proc. ICCM, 2, 378 (2007)
[40] Chung, FR; Lu, L.; Vu, V., Spectra of random graphs with given expected degrees, Proc. Natl. Acad. Sci. U.S.A., 100, 11, 6313-6318 (2003) · Zbl 1064.05138 · doi:10.1073/pnas.0937490100
[41] Coifman, R.R., Lafon, S.: Diffusion maps. Appl. Comput. Harmon. Anal. 21(1), 5-30 (2006). doi:10.1016/j.acha.2006.04.006. Special Issue: Diffusion Maps and Wavelets · Zbl 1095.68094
[42] Coifman, RR; Lafon, S.; Lee, AB; Maggioni, M.; Nadler, B.; Warner, F.; Zucker, SW, Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps, Proc. Natl. Acad. Sci. U.S.A., 102, 21, 7426-7431 (2005) · Zbl 1405.42043 · doi:10.1073/pnas.0500334102
[43] Coifman, RR; Lafon, S.; Lee, AB; Maggioni, M.; Nadler, B.; Warner, F.; Zucker, SW, Geometric diffusions as a tool for harmonic analysis and structure definition of data: multiscale methods, Proc. Natl. Acad. Sci. U.S.A., 102, 21, 7432-7437 (2005) · Zbl 1405.42044 · doi:10.1073/pnas.0500896102
[44] Coja-Oghlan, A., Lanka, A.: The spectral gap of random graphs with given expected degrees. International Colloquium on Automata. Languages, and Programming, pp. 15-26. Springer, Heidelberg (2006) · Zbl 1223.05273
[45] Connes, A., Noncommutative differential geometry, Inst. Hautes Études Sci. Publ. Math., 62, 1, 41-144 (1985) · Zbl 0592.46056 · doi:10.1007/BF02698807
[46] Connes, A.; Alon, N., Noncommutative geometry, Visions in Mathematics, 481-559 (2000), Basel: Birkhauser, Basel · Zbl 0985.58003
[47] Corlette, K., Flat G-bundles with canonical metrics, J. Differ. Geom., 28, 361-382 (1988) · Zbl 0676.58007
[48] Cramér, H., Mathematical Methods of Statistics (1946), Princeton: Princeton University Press, Princeton · Zbl 0063.01014
[49] Crane, K., de Goes, F., Desbrun, M., Schröder, P.: Digital geometry processing with discrete exterior calculus. In: ACM SIGGRAPH 2013 Courses, SIGGRAPH’13, pp. 7:1-7:126. ACM, New York (2013). doi:10.1145/2504435.2504442
[50] Cucuringu, M., Sync-Rank: robust ranking, constrained ranking and rank aggregation via eigenvector and SDP synchronization, IEEE Trans. Netw. Sci. Eng., 3, 1, 58-79 (2016)
[51] Cucuringu, M.; Lipman, Y.; Singer, A., Sensor network localization by eigenvector synchronization over the Euclidean group, ACM Trans. Sensor Netw. (TOSN), 8, 3, 19 (2012)
[52] Deligne, P.: Équations Différentielles à Points Singuliers Réguliers. Lecture Notes in Mathematics, vol. 163. Springer, Berlin (1970) · Zbl 0244.14004
[53] Desbrun, M., Hirani, A.N., Leok, M., Marsden, J.E.: Discrete Exterior Calculus (2005). arXiv:math/0508341
[54] Donoho, DL; Grimes, C., Hessian eigenmaps: new locally linear embedding techniques for high-dimensional data, Proc. Natl. Acad. Sci. U.S.A., 100, 5591-5596 (2003) · Zbl 1130.62337
[55] Dryden, IL; Mardia, KV, Statistical Shape Analysis (1998), New York: Wiley, New York · Zbl 0901.62072
[56] Dupont, JL, Simplicial de Rham cohomology and characteristic classes of flat bundles, Topology, 15, 3, 233-245 (1976) · Zbl 0331.55012
[57] Edelsbrunner, H.; Harer, J., Computational Topology: An Introduction (2010), Providence: American Mathematical Society, Providence · Zbl 1193.55001
[58] El Karoui, N.; Wu, H-T, Graph connection Laplacian methods can be made robust to noise, Ann. Stat., 44, 1, 346-372 (2016) · Zbl 1350.60036 · doi:10.1214/14-AOS1275
[59] Esnault, H., Characteristic classes of flat bundles, Topology, 27, 3, 323-352 (1988) · Zbl 0699.32016
[60] Evans, AR; Wilson, GP; Fortelius, M.; Jernvall, J., High-level similarity of dentitions in carnivorans and rodents, Nature, 445, 7123, 78-81 (2007)
[61] Fanuel, M., Alaíz, C.M., Suykens, J.A.K.: Magnetic Eigenmaps for Community Detection in Directed Networks (2016). arXiv:1606.07359
[62] Fanuel, M., Suykens, J.A.K.: Deformed Laplacians and spectral ranking in directed networks (2015). arXiv:1511.00492 · Zbl 1433.05191
[63] Félix, Y.; Lavendhomme, R., On de Rham’s theorem in synthetic differential geometry, J. Pure and Appl. Algebra, 69, 1, 21-31 (1990) · Zbl 0735.51015
[64] Fisher, RA, On the mathematical foundations of theoretical statistics, Philos. Trans. R. Soc. Lond. A, 222, 309-368 (1922) · JFM 48.1280.02
[65] Gao, T.: Hypoelliptic Diffusion Maps and Their Applications in Automated Geometric Morphometrics. Ph.D. Thesis, Duke University (2015)
[66] Gao, T.: The diffusion geometry of fibre bundles: horizontal diffusion maps. submitted (2016) arXiv:1602.02330
[67] Gao, T.; Kovalsky, SZ; Boyer, DM; Daubechies, I., Gaussian process landmarking for three-dimensional geometric morphometrics, SIAM J. Math. Data Sci., 1, 1, 237-267 (2019) · Zbl 1499.60113 · doi:10.1137/18M1203481
[68] Gao, T.; Kovalsky, SZ; Daubechies, I., Gaussian process landmarking on manifolds, SIAM J. Math. Data Sci., 1, 1, 208-236 (2019) · Zbl 1499.60114 · doi:10.1137/18M1184035
[69] Gao, T.; Yapuncich, GS; Daubechies, I.; Mukherjee, S.; Boyer, DM, Development and assessment of fully automated and globally transitive geometric morphometric methods, with application to a biological comparative dataset with high interspecific variation, Anat. Rec., 301, 4, 636-658 (2018) · doi:10.1002/ar.23700
[70] García-Raboso, A., Rayan, S.: Introduction to nonabelian hodge theory. Calabi-Yau Varieties: Arithmetic. Geometry and Physics, pp. 131-171. Springer, Cham (2015) · Zbl 1329.14002
[71] Goldman, WM, Characteristic classes and representations of discrete subgroups of lie groups, Bull. Am. Math. Soc., 6, 1, 91-94 (1982) · Zbl 0493.57011
[72] Goldman, W.M.: Mapping class group dynamics on surface group representations. Problems on Mapping Class Groups and Related Topics. Proceedings of the Symposium on Pure Mathematics, vol. 74, pp. 189-214. American Mathematical Society, Providence (2006) · Zbl 1304.57025
[73] Gonzalez, PN; Barbeito-Andrés, J.; D’Addona, LA; Bernal, V.; Perez, SI, Technical Note: performance of semi- and fully automated approaches for registration of 3D surface coordinates in geometric morphometric studies, Am. J. Phys. Anthropol., 160, 1, 169-178 (2016)
[74] Gower, JC, Generalized procrustes analysis, Psychometrika, 40, 1, 33-51 (1975) · Zbl 0305.62038 · doi:10.1007/BF02291478
[75] Gower, J.C., Dijksterhuis, G.B.: Procrustes Problems. Oxford Statistical Science Series, vol. 3. Oxford University Press, Oxford (2004) · Zbl 1057.62044
[76] Haefliger, A.: Complexes of Groups and Orbihedra. Group Theory From a Geometrical Viewpoint. In: Proceedings of a Workshop, Held at the International Centre for Theoretical Physics in Trieste, Italy, 26 March-6 April 1990, pp. 504-540. World Scientific, Singapore (1991) · Zbl 0858.57013
[77] Haefliger, A., Extension of complexes of groups, Ann. Inst. Fourier Grenoblé, 42, 1-2, 275-311 (1992) · Zbl 0762.20018
[78] Hartley, R.; Trumpf, J.; Dai, Y.; Li, H., Rotation averaging, Int. J. Comput. Vis., 103, 3, 267-305 (2013) · Zbl 1270.68346 · doi:10.1007/s11263-012-0601-0
[79] Hitchin, NJ, The self-duality equations on a Riemann surface, Proc. Lond. Math. Soc., 55, 3, 59-126 (1987) · Zbl 0634.53045
[80] Hitchin, NJ, Flat connections and geometric quantization, Commun. Math. Phys., 131, 2, 347-380 (1990) · Zbl 0718.53021
[81] Hoffman, C., Kahle, M., Paquette, E.: Spectral Gaps of Random Graphs and Applications to Random Topology. arXiv preprint arXiv:1201.0425 (2012)
[82] Huang, Q., Guibas, L.: Consistent shape maps via semidefinite programming. computer graphics Forum. In: Proceedings of Eurographics Symposium on Geometry Processing (SGP) 32(5), 177-186 (2013)
[83] Huang, Q.; Wang, F.; Guibas, L., Functional map networks for analyzing and exploring large shape collections, ACM Trans. Graph. (TOG), 33, 4, 36 (2014) · Zbl 1396.65046
[84] Huang, Q., Zhang, G., Gao, L., Hu, S., Bustcher, A., Guibas, L.: An optimization approach for extracting and encoding consistent maps in a shape collection. ACM Trans. Graph. 31, 125:1-125:11 (2012)
[85] Jiang, X.; Lim, LH; Yao, Y.; Ye, Y., Statistical ranking and combinatorial Hodge theory, Math. Progr., 127, 1, 203-244 (2011) · Zbl 1210.90142
[86] Johnson, JL; Goldring, T., Discrete Hodge theory on graphs: a tutorial, Comput. Sci. Eng., 15, 5, 42-55 (2013)
[87] Kamber, FW; Tondeur, P., Flat bundles and characteristic classes of group-representations, Am. J. Math., 89, 4, 857-886 (1967) · Zbl 0164.53704
[88] Kashiwara, M.: Faisceaux Constructibles et Systèmes Holonomes d’équations aux Dérivées Partielles Linéaires à Points Singuliers Réguliers. Séminaire Équations aux dérivées partielles (Polytechnique) pp. 1-6 (1979)
[89] Kashiwara, M., The Riemann-Hilbert problem for holonomic systems, Publ. Res. Inst. Math. Sci., 20, 2, 319-365 (1984) · Zbl 0566.32023
[90] Kenyon, R., Spanning forests and the vector bundle Laplacian, Ann. Probab., 39, 5, 1983-2017 (2011) · Zbl 1252.82029
[91] Kezurer, I.; Kovalsky, SZ; Basri, R.; Lipman, Y., Tight relaxation of quadratic matching, Comput. Graph. Forum, 34, 5, 115-128 (2015) · doi:10.1111/cgf.12701
[92] Kock, A., Differential forms with values in groups, Bull. Aust. Math. Soc., 25, 3, 357-386 (1982) · Zbl 0484.58005
[93] Kock, A., Synthetic Differential Geometry (2006), Cambridge: Cambridge University Press, Cambridge · Zbl 1091.51002
[94] Koehl, P., Hass, J.: Landmark-free geometric methods in biological shape analysis. J. R. Soc. Interface 12(113), 20150,795 (2015)
[95] Kokkinos, I., Bronstein, M.M., Litman, R., Bronstein, A.M.: Intrinsic shape context descriptors for deformable shapes. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 159-166. IEEE (2012)
[96] Kovalsky, SZ; Aigerman, N.; Basri, R.; Lipman, Y., Controlling singular values with semidefinite programming, ACM Trans. Graph., 33, 4, 69-71 (2014) · Zbl 1396.65051
[97] Kyng, R., Lee, Y.T., Peng, R., Sachdeva, S., Spielman, D.A.: Sparsified Cholesky and multigrid solvers for connection Laplacians. In: Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, pp. 842-850. ACM, New York (2016). doi:10.1145/2897518.2897640 · Zbl 1378.65079
[98] Labourie, F.: Lectures on Representations of Surface Groups. Zurich Lectures in Advanced Mathematics. European Mathematical Society (2013) · Zbl 1285.53001
[99] Lai, R., Zhao, H.: Multi-Scale Non-Rigid Point Cloud Registration Using Robust Sliced-Wasserstein Distance via Laplace-Beltrami Eigenmap. arXiv preprint arXiv:1406.3758 (2014)
[100] Lee, J.M.: Introduction to Smooth Manifolds. Graduate Texts in Mathematics, vol. 218. Springer, New York (2003)
[101] Lim, L.H.: Hodge Laplacians on Graphs. arXiv preprint arXiv:1507.05379 (2015)
[102] Lipman, Y.; Daubechies, I., Conformal Wasserstein distances: comparing surfaces in polynomial time, Adv. Math., 227, 3, 1047-1077 (2011) · Zbl 1217.53026 · doi:10.1016/j.aim.2011.01.020
[103] Lipman, Y.; Puente, J.; Daubechies, I., Conformal Wasserstein distance: II, Computational aspects and extensions. Math. Comput., 82, 281, 331-381 (2013) · Zbl 1281.65034
[104] Lue, HS, Characteristic classes for the deformation of flat connections, Trans. Am. Math. Soc., 217, 379-393 (1976) · Zbl 0328.58001
[105] Madore, J., An Introduction to Noncommutative Differential Geometry and Its Physical Applications (1999), Cambridge: Cambridge University Press, Cambridge · Zbl 0942.58014
[106] Majid, S., Noncommutative Riemannian geometry on graphs, J. Geom. Phys., 69, 74-93 (2013) · Zbl 1278.05123
[107] Malhanobis, PC, On the generalized distance in statistics, Proc. Natl. Inst. Sci. India, 2, 49-55 (1936) · Zbl 0015.03302
[108] Maron, H.; Dym, N.; Kezurer, I.; Kovalsky, S.; Lipman, Y., Point registration via efficient convex relaxation, ACM Trans. Graph. (TOG), 35, 4, 73 (2016)
[109] Martinec, D., Pajdla, T.: Robust rotation and translation estimation in multiview reconstruction. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-8. IEEE (2007)
[110] Mebkhout, Z.: Sur le Probleme de Hilbert-Riemann. Complex Analysis. Microlocal Calculus and Relativistic Quantum Theory, pp. 90-110. Springer, Berlin (1980) · Zbl 0444.32003
[111] Mebkhout, Z., Une Autre Équivalence de catégories, Compos. Math., 51, 1, 63-88 (1984) · Zbl 0566.32021
[112] Michor, PW, Topics in Differential Geometry (2008), Providence: American Mathematical Society, Providence · Zbl 1175.53002
[113] Milnor, J., On the existence of a connection with curvature zero, Comment. Math. Helv., 32, 1, 215-223 (1958) · Zbl 0196.25101
[114] Milnor, J., Stasheff, J.D.: Characteristic classes. In: Annals of Mathematics Studies, vol. 76. Princeton University Press, Princeton (1974) · Zbl 0298.57008
[115] Morita, S., Geometry of Characteristic Classes (2001), Providence: American Mathematical Society, Providence · Zbl 0976.57026
[116] Mukherjee, S.; Steenbergen, J., Random walks on simplicial complexes and harmonics, Random Struct. Algorithms, 49, 2, 379-405 (2016) · Zbl 1346.05301
[117] Naor, A., Regev, O., Vidick, T.: Efficient rounding for the noncommutative Grothendieck inequality. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of computing, pp. 71-80. ACM, New York (2013) · Zbl 1293.68151
[118] Nguyen, A.; Ben-Chen, M.; Welnicka, K.; Ye, Y.; Guibas, L., An optimization approach to improving collections of shape maps, Comput. Graph. Forum, 30, 5, 1481-1491 (2011)
[119] Pampush, JD; Winchester, JM; Morse, PE; Vining, AQ; Boyer, DM; Kay, RF, Introducing molaR: a new R package for quantitative topographic analysis of teeth (and other topographic surfaces), J. Mamm. Evol., 23, 397-412 (2016)
[120] Parzanchevski, O.; Rosenthal, R., Simplicial complexes: spectrum, homology and random walks, Random Struct. Algorithms, 50, 2, 225-261 (2016) · Zbl 1359.05114
[121] Parzanchevski, O.; Rosenthal, R.; Tessler, RJ, Isoperimetric inequalities in simplicial complexes, Combinatorica, 36, 2, 195-227 (2015) · Zbl 1389.05174
[122] Pinkall, U.; Polthier, K., Computing discrete minimal surfaces and their conjugates, Exp. Math., 2, 1, 15-36 (1993) · Zbl 0799.53008
[123] Puente, J.: Distances and Algorithms to Compare Sets of Shapes for Automated Biological Morphometrics. Ph.D. thesis, Princeton University Press, Princeton (2013)
[124] Rangarajan, A., Chui, H., Bookstein, F.L.: The softassign procrustes matching algorithm. In: Information Processing in Medical Imaging, pp. 29-42. Springer, New York (1997)
[125] Rao, CR, Information and accuracy obtainable in the estimation of statistical parameters, Bull. Calcutta Math. Soc., 37, 81-91 (1945) · Zbl 0063.06420
[126] Raviv, D., Bronstein, M.M., Bronstein, A.M., Kimmel, R.: Volumetric heat kernel signatures. In: Proceedings of the ACM Workshop on 3D Object Retrieval, pp. 39-44. ACM, New York (2010)
[127] Roweis, ST; Saul, LK, Nonlinear dimensionality reduction by locally linear embedding, Science, 290, 2323-2326 (2000)
[128] Shi, J.; Malik, J., Normalized cuts and image segmentation, IEEE Trans. Pattern Anal. Mach. Intell., 22, 8, 888-905 (2000)
[129] Shkolnisky, Y.; Singer, A., Viewing direction estimation in Cryo-EM using synchronization, SIAM J. Imaging Sci., 5, 3, 1088-1110 (2012) · Zbl 1254.92058
[130] Simpson, CT, Higgs bundles and local systems, Publ. Math. l’IHÉS, 75, 1, 5-95 (1992) · Zbl 0814.32003
[131] Simpson, CT, Moduli of representations of the fundamental group of a smooth projective variety I, Publ. Math. l’IHÉS, 79, 1, 47-129 (1994) · Zbl 0891.14005
[132] Simpson, CT, Moduli of representations of the fundamental group of a smooth projective variety, II. Publ. Math. Inst. Hautes Sci., 80, 1, 5-79 (1994) · Zbl 0891.14006 · doi:10.1007/BF02698895
[133] Singer, A., Angular synchronization by eigenvectors and semidefinite programming, Appl. Comput. Harm. Anal., 30, 1, 20-36 (2011) · Zbl 1206.90116 · doi:10.1016/j.acha.2010.02.001
[134] Singer, A., Ht, Wu: Orientability and diffusion maps, Appl. Computat. Harmon. Anal., 31, 1, 44-58 (2011) · Zbl 1218.68131 · doi:10.1016/j.acha.2010.10.001
[135] Singer, A., Ht, Wu: Vector diffusion maps and the connection Laplacian, Commun. Pure Appl. Math., 65, 8, 1067-1144 (2012) · Zbl 1320.68146 · doi:10.1002/cpa.21395
[136] Singer, A., Wu, H.-T.: Spectral Convergence of the Connection Laplacian from Random Samples. arXiv preprint arXiv:1306.1587 (2013)
[137] Singer, A.; Zhao, Z.; Shkolnisky, Y.; Hadani, R., Viewing angle classification of cryo-electron microscopy images using eigenvectors, SIAM J. Imaging Sci., 4, 2, 723-759 (2011) · Zbl 1216.92046
[138] Solomon, J.; Nguyen, A.; Butscher, A.; Ben-Chen, M.; Guibas, L., Soft maps between surfaces, Comput. Graph. Forum, 31, 5, 1617-1626 (2012) · doi:10.1111/j.1467-8659.2012.03167.x
[139] Steenbergen, J.; Klivans, C.; Mukherjee, S., A Cheeger-type inequality on simplicial complexes, Adv. Appl. Math., 56, 56-77 (2014) · Zbl 1305.55010
[140] Steenrod, N.E.: The Topology of Fibre Bundles. Princeton Mathematical Series, vol. 14. Princeton University Press, Princeton (1951) · Zbl 0054.07103
[141] Su, Z., Zeng, W., Shi, R., Wang, Y., Sun, J., Gu, X.: Area preserving brain mapping. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2235-2242 (2013)
[142] Sun, J.; Ovsjanikov, M.; Guibas, L., A concise and provably informative multi-scale signature based on heat diffusion, Comput. Graph. Forum, 28, 5, 1383-1392 (2009)
[143] Taubes, C., Differential Geometry: Bundles, Connections, Metrics and Curvature (2011), Oxford: Oxford University Press, Oxford · Zbl 1231.53001
[144] Tenenbaum, JB; de Silva, V.; Langford, J., A global geometric framework for nonlinear dimensionality reduction, Science, 290, 2319-2323 (2000)
[145] Tu, L.W.: Hodge Theory and the Local Torelli Problem. Memoirs of the American Mathematical Society, vol. 43(279). American Mathematical Society, Providence (1983) · Zbl 0538.14005
[146] Tzveneva, T.; Singer, A.; Rusinkiewicz, S., Global Alignment of Multiple 3-D Scans using Eigenvector Synchronization (bachelor thesis) (2011), Tech. Rep.: Technical Report, Princeton University Press, Princeton, Tech. Rep.
[147] van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579-2605 (2008) · Zbl 1225.68219
[148] Vassiliou, E., Flat bundles and holonomy homomorphisms, Manuscr. Math., 42, 2-3, 161-170 (1983) · Zbl 0519.58010
[149] Villani, C., Topics in Optimal Transportation (2003), Providence: Graduate Studies in Mathematics. American Mathematical Society, Providence · Zbl 1106.90001
[150] Villani, C., Optimal Transport: Old and New (2008), Berlin: Grundlehren der Mathematischen Wissenschaften. Springer, Berlin · Zbl 1156.53003
[151] Vitek, NS; Manz, CL; Gao, T.; Bloch, JI; Strait, SG; Boyer, DM, Semi-supervised determination of pseudocryptic morphotypes using observer-free characterizations of anatomical alignment and shape, Ecol. Evol., 7, 14, 5041-5055 (2017)
[152] Von Luxburg, U., A tutorial on spectral clustering, Stat. Comput., 17, 4, 395-416 (2007)
[153] Wang, F., Huang, Q., Guibas, L.: Image co-segmentation via consistent functional maps. In: 2013 IEEE International Conference on Computer Vision (ICCV), pp. 849-856. IEEE (2013)
[154] Wang, L.; Singer, A., Exact and stable recovery of rotations for robust synchronization, Inf. Inference, 2, 2, 145-193 (2013) · Zbl 1309.65070 · doi:10.1093/imaiai/iat005
[155] Weinstein, A.: The symplectic structure on moduli space. In: The Floer Memorial Volume, pp. 627-635. Birkhäuser, Basel (1995) · Zbl 0834.58011
[156] Wells, R.O.: Differential Analysis on Complex Manifolds. Graduate Texts in Mathematics, vol. 65. Springer, Berlin (2007)
[157] Xia, EZ, Abelian and non-abelian cohomology, Geometry, Topology and Dynamics of Character Varieties, 23, 309-349 (2012) · Zbl 1276.14049
[158] Ye, K.; Lim, LH, Cohomology of cryo-electron microscopy, SIAM J. Appl. Algebra Geom., 1, 1, 507-535 (2017) · Zbl 1377.92054 · doi:10.1137/16M1070220
[159] Zhao, X.; Su, Z.; Gu, X.; Kaufman, A.; Sun, J.; Gao, J.; Luo, F., Area-preservation mapping using optimal mass transport, IEEE Trans. Vis. Comput. Graph., 19, 12, 2838-2847 (2013) · doi:10.1109/TVCG.2013.135
[160] Zhu, L., Haker, S., Tannenbaum, A.: Area-preserving mappings for the visualization of medical structures. In: Ellis, R., Peters, T. (eds.) Medical Image Computing and Computer-Assisted Intervention (MICCAI 2003). Lecture Notes in Computer Science, vol. 2879, pp. 277-284. Springer, Berlin (2003). doi:10.1007/978-3-540-39903-2_35
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.