×

M dwarfs: planet formation and long term evolution. (English) Zbl 1082.85503

Summary: The first part of this paper discusses how planet formation proceeds in the disks orbiting M dwarf stars. These environments are different from those associated with solar-type stars in several ways: The planet forming clock (set by orbits) runs slower, the disks are more prone to evaporation, the supply of raw material is lower, the snowline is closer in, and planetary systems are more easily disrupted. Because of these considerations, red dwarfs are less likely to harbor giant planets, but can readily produce smaller planets. The second part of this paper describes stellar evolution calculations for M dwarfs, which live far longer than the current age of the universe. These diminutive stellar objects remain convective over most of their lives, continue to burn hydrogen for trillions of years, and do not experience red giant phases in their old age. Instead, red dwarfs turn into blue dwarfs and finally white dwarfs. This work also shows (in part) why larger stars become red giants.

MSC:

85A15 Galactic and stellar structure
83C30 Asymptotic procedures (radiation, news functions, \(\mathcal{H} \)-spaces, etc.) in general relativity and gravitational theory
Full Text: DOI

References:

[1] Adams, RMxAC 22 pp 46– (2004)
[2] Adams, ApJ 611 pp 360– (2004)
[3] Adams, RvMP 69 pp 337– (1997)
[4] Adams, ApJ 308 pp 836– (1986)
[5] Alexander, ApJ 272 pp 773– (1983)
[6] Bond, ApJ 606 pp l155– (2004)
[7] Boss, ApJ 536 pp l101– (2000)
[8] Briceno, Sci 291 pp 93– (2001)
[9] Butler, ApJ 545 pp 504– (2000)
[10] Butler, ApJ 617 pp 580– (2004)
[11] D’Antona, ApJS 90 pp 46– (1994)
[12] Fischer, ApJ 622 pp 1102– (2005)
[13] Han, ApJ 467 pp 540– (1996)
[14] Henry, AJ 108 pp 1437– (1994)
[15] Henry, ApJ 529 pp l41– (2000)
[16] Henyey, ApJ 139 pp 306– (1964)
[17] Hubickyj, RMxAC 22 pp 83– (2004)
[18] Iben, ARA&A 12 pp 215– (1974)
[19] Inaba, A&A 410 pp 711– (2003)
[20] Inaba, Icarus 16 pp 46– (2003)
[21] Koch, SPIE 3356 pp 599– (1998)
[22] Kornet, A&A 396 pp 977– (2002)
[23] Laughlin, ApJ 482 pp 420– (1997)
[24] Laughlin, ApJ 612 pp l73– (2004)
[25] Lee, ApJ 567 pp 596– (2002)
[26] Marcy, ARA&A 36 pp 57– (1998)
[27] , , : 2003, in: D. Deming, S. Seager (eds.), Scientific Progress in Research on Extrasolar Planets , ASP Conf. Ser. 294, 1
[28] , : 2000, in: V. Mannings, A.P. Boss, S.S. Russell (eds.), Protostars and Planets IV , Univ. Arizona Press, Tucson, p. 1285
[29] Marcy, ApJ 556 pp 296– (2001)
[30] Papaloizou, ApJ 521 pp 823– (1999)
[31] Podolak, Icarus 165 pp 428– (2003)
[32] Pollack, Icarus 64 pp 471– (1985)
[33] Pollack, Icarus 124 pp 62– (1996)
[34] Renzini, ApJ 400 pp 280– (1992)
[35] Santos, A&A 398 pp 363– (2003)
[36] Saumon, ApJS 99 pp 713– (1995)
[37] Seagroves, PASP 115 pp 1355– (2003)
[38] Sigurdsson, Sci 301 pp 193– (2003)
[39] , , et al.: 2004, BAAS 204, abs.#62.01
[40] , : 2003, in: D. Deming, S. Seager (eds.), Scientific Progress in Research on Extrasolar Planets , ASP Conf. Ser. 294, 17
[41] Weiss, Nucl. Data Tables 45 pp 209– (1990)
[42] Whitworth, MNRAS 236 pp 505– (1989) · doi:10.1093/mnras/236.3.505
[43] , : 2000, in: V. Mannings, A.P. Boss, S.S. Russell (eds.), Protostars and Planets IV , Univ. Arizona Press, Tucson, p. 1081
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.