×

Binomial transform of the generalized third-order Jacobsthal sequence. (English) Zbl 1504.11036

Summary: In this study, we establish the binomial transform of the generalized third-order Jacobsthal sequence. We also describe the binomial transform of four special cases of third-order Jacobsthal sequence such as the binomial transform of the third-order Jacobsthal, third-order Jacobsthal-Lucas, modified third-order Jacobsthal-Lucas, third-order Jacobsthal-Perrin sequences. Moreover, we examine their features in more detail.

MSC:

11B39 Fibonacci and Lucas numbers and polynomials and generalizations
11B83 Special sequences and polynomials

Software:

OEIS
Full Text: DOI

References:

[1] Aydın, F. T., On generalizations of the Jacobsthal sequence, Notes Number Theory Discr. Math.24(1) (2018) 120-135.
[2] Barry, P., On integer-sequence-based constructions of generalized Pascal triangles, J. Integer Seq.9(2) (2006) 1-34. · Zbl 1178.11023
[3] Bruce, I., A modified tribonacci sequence, Fibonacci Quart.22(3) (1984) 244-246. · Zbl 0539.10014
[4] M. Catalani, Identities for tribonacci-related sequences, preprint (2002), arXiv:math/0209179.
[5] Çelik, S., Durukan, I. and Özkan, E., New recurrences on Pell numbers, Pell-Lucas numbers, Jacobsthal numbers, and Jacobsthal-Lucas numbers, Chaos Solitons Fractals150(111173) (2021) 1-8. · Zbl 1489.11025
[6] Choi, E., Modular tribonacci numbers by matrix method, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math.20(3) (2013) 207-221, https://doi.org/10.7468/ jksmeb.2013.20.3.207 · Zbl 1358.11027
[7] Cook, C. K. and Bacon, M. R., Some identities for Jacobsthal and Jacobsthal-Lucas numbers satisfying higher order recurrence relations, Ann. Math. Inform.41 (2013) 27-39. · Zbl 1274.11028
[8] Elia, M., Derived sequences, the tribonacci recurrence and cubic forms, Fibonacci Quart.39(20) (2001) 107-115. · Zbl 1001.11008
[9] Er, M. C., Sums of Fibonacci numbers by matrix methods, Fibonacci Quart.22(3) (1984) 204-207. · Zbl 0539.10013
[10] Gould, H. W., Series transformations for finding recurrences for sequences, Fibonacci Quart.28(2) (1990) 166-171. · Zbl 0707.11012
[11] Haukkanen, P., Formal power series for binomial sums of sequences of numbers, Fibonacci Quart.31(1) (1993) 28-31. · Zbl 0770.11014
[12] Horadam, A. F., Jacobsthal representation numbers, Fibonacci Quart.34(1) (1996) 40-54. · Zbl 0869.11013
[13] Howard, F. T. and Saidak, F., Zhou’s theory of constructing identities, Cong. Numer.200 (2010) 225-237. · Zbl 1204.11025
[14] Kalman, D., Generalized Fibonacci numbers by matrix methods, Fibonacci Quart.20(1) (1982) 73-76. · Zbl 0472.10016
[15] Knuth, D. E., The Art of Computer Programming, Vol. 3 (Addison Wesley, Reading, MA, 1973). · Zbl 0302.68010
[16] Koshy, T., Pell and Pell-Lucas Numbers with Applications, Vol. 431 (Springer, NY, 2014). · Zbl 1330.11002
[17] Koshy, T., Fibonacci Lucas Numbers with Applications, Vol. 1, 2nd edn. (John Wiley & Sons, New York, 2018). · Zbl 1379.11001
[18] Koshy, T., Fibonacci and Lucas Numbers with Applications, Vol. 2 (John Wiley & Sons, 2019). · Zbl 1409.11001
[19] Lin, P. Y., De Moivre-type identities for the tribonacci numbers, Fibonacci Quart.26(2) (1988) 131-134. · Zbl 0641.10006
[20] Özkan, E., Altun, I. and Göçer, A. A., On relationship among a new family of k-Fibonacci, k-Lucas numbers, Fibonacci and Lucas numbers, Chiang Mai J. Sci.44(4) (2017) 1744-1750.
[21] Özkan, E. and Tastan, M., A new families of Gauss k-Jacobsthal numbers and Gauss k-Jacobsthal-Lucas numbers and their polynomials, J. Sci. Arts20(4) (2020) 893-908.
[22] Pethe, S., Some Identities for tribonacci sequences, Fibonacci Quart.26(2) (1988) 144-151. · Zbl 0641.10007
[23] E. Polatlıand Y. Soykan, On generalized third-order Jacobsthal numbers, submitted.
[24] Prodinger, H., Some information about the binomial transform, Fibonacci Quart.32(5) (1994) 412-415. · Zbl 0818.05002
[25] Scott, A., Delaney, T. and Hoggatt, V.Jr., The tribonacci sequence, Fibonacci Quart.15(3) (1977) 193-200. · Zbl 0375.10004
[26] Shannon, A., Tribonacci numbers and Pascal’s pyramid, Fibonacci Quart.15(3) (1977) 268-275. · Zbl 0385.05006
[27] N. J. A. Sloane, The on-line encyclopedia of integer sequences, http://oeis.org/. · Zbl 1274.11001
[28] Soykan, Y., Simson identity of generalized m-step fibonacci numbers, Int. J. Adv. Appl. Math. Mech.7(2) (2019) 45-56. · Zbl 1465.11066
[29] Soykan, Y., Tribonacci and Tribonacci-Lucas Sedenions, Mathematics7(1) (2019) 1-19, https://doi.org/10.3390/math7010074.
[30] Soykan, Y., Summing formulas for generalized tribonacci numbers, Univ. J. Math. Appl.3(1) (2020) 1-11, https://doi.org/10.32323/ujma.637876.
[31] Soykan, Y., Generalized tribonacci numbers: Summing formulas, Int. J. Adv. Appl. Math. and Mech.7(3) (2020) 57-76. · Zbl 1465.11069
[32] Soykan, Y., A closed formula for the sums of squares of generalized tribonacci numbers, J. Prog. Res. Math.16(2) (2020) 2932-2941.
[33] Soykan, Y., On the sums of squares of generalized tribonacci numbers: Closed formulas of \(\sum_{k = 0}^n x^k W_k^2\), Arch. Curr. Res. Int.20(4) (2020) 22-47, https://doi.org/10.9734/ACRI/2020/v20i430187.
[34] Spickerman, W., Binet’s formula for the tribonacci sequence, Fibonacci Quart.20(2) (1982) 118-120. · Zbl 0486.10011
[35] Spivey, M. Z., Combinatorial sums and finite differences, Discrete Math.307 (2007) 3130-3146, https://doi.org/10.1016/j.disc.2007.03.052. · Zbl 1129.05006
[36] Yalavigi, C. C., Properties of Tribonacci numbers, Fibonacci Quart.10(3) (1972) 231-246. · Zbl 0233.10008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.