×

A fluid-structure interaction model with interior damping and delay in the structure. (English) Zbl 1341.74054

Let a viscous fluid occupies a domain \(\Omega_f \subset \mathbb R^d\) (\(d=2,3\)) which encloses an elastic body occupying \(\Omega_s \subset \mathbb R^d\). The interface \(\Gamma_s\) and the outer boundary \(\Gamma_f\) are supposed to be sufficiently smooth. The author considers the Stokes equations in \(\Omega_f\) and the wave equation in \(\Omega_s\) coupled via linear conjugation conditions on \(\Gamma_s\). Spectral properties and exponential or strong stability of the interaction model under appropriate conditions on the damping factor, delay factor and the delay parameter are established using a generalized Lax-Milgram method.

MSC:

74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76D07 Stokes and related (Oseen, etc.) flows
93D15 Stabilization of systems by feedback
93D20 Asymptotic stability in control theory
Full Text: DOI

References:

[1] Arendt W., Batty C.J.K.: Tauberian theorems and stability of one-parameter semigroups. Trans. Amer. Math. Soc. 360, 837-852 (1988) · Zbl 0652.47022 · doi:10.1090/S0002-9947-1988-0933321-3
[2] Avalos G., Bucci F.: Rational rates of uniform decay for strong solutions to a fluid-structure PDE system. J. Differ. Equ. 258, 4398-4423 (2015) · Zbl 1319.35180 · doi:10.1016/j.jde.2015.01.037
[3] Avalos G., Triggiani R.: The coupled PDE system arising in fluid-structure interaction, Part I: Explicit semigroup generator and its spectral properties. Contemp. Math. 440, 15-54 (2007) · Zbl 1297.74035 · doi:10.1090/conm/440/08475
[4] Avalos G., Triggiani R.: Semigroup wellposedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction. Discr. Cont. Dyn. Syst. 2, 417-447 (2009) · Zbl 1179.35010 · doi:10.3934/dcdss.2009.2.417
[5] Avalos G., Triggiani R.: Rational decay rates for a PDE heat-structure interaction: a frequency domain approach. Evol. Equ. Control Theory 2, 233-253 (2013) · Zbl 1275.35035 · doi:10.3934/eect.2013.2.233
[6] Avalos G., Triggiani R.: Fluid structure interaction with and without internal dissipation of the structure : A contrast study in stability. Evol. Equ. Control Theory 2, 563-598 (2013) · Zbl 1277.35045 · doi:10.3934/eect.2013.2.563
[7] Avalos G., Lasiecka I., Trigianni R.: Higher regularity of a coupled parabolic-hyperbolic fluid structure interactive system. Georgian Math. J. 15, 403-437 (2008) · Zbl 1157.35085
[8] Barbu V., Grujić Z., Lasiecka I., Tuffaha A.: Existence of the energy-level weak solutions for a nonlinear fluid-structure interaction model. Contemp. Math. 440, 55-81 (2007) · Zbl 1297.35234 · doi:10.1090/conm/440/08476
[9] Barbu V., Grujić Z., Lasiecka I., Tuffaha A.: Smoothness of weak solutions to a nonlinear fluid-structure interaction model. Indiana U. Math. J. 57, 1173-1207 (2008) · Zbl 1147.74016 · doi:10.1512/iumj.2008.57.3284
[10] Datko R.: Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedback. SIAM J. Control Optim. 26, 697-713 (1988) · Zbl 0643.93050 · doi:10.1137/0326040
[11] Datko R., Lagnese J., Polis P.: An example on the effect of time delays in boundary feedback stabilization of wave equations. SIAM J. Control Optim 24, 152-156 (1985) · Zbl 0592.93047 · doi:10.1137/0324007
[12] Desch W., Fas̆angová E., Milota J., Propst G.: Stabilization through viscoelastic boundary damping: a semigroup approach. Semigroup Forum 80, 405-415 (2010) · Zbl 1193.35149 · doi:10.1007/s00233-009-9197-2
[13] Engel K.J., Nagel R.: One-Parameter Semigroups for Linear Evolution Equations, 2nd ed. Springer, Berlin (2000) · Zbl 0952.47036
[14] Du Q., Gunzburger M.D., Hou L.S., Lee J.: Analysis of a linear fluid-structure interaction problem. Discr. Contin. Dyn. Syst. 9, 633-650 (2003) · Zbl 1039.35076 · doi:10.3934/dcds.2003.9.633
[15] Horn R.A., Johnson C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985) · Zbl 0576.15001 · doi:10.1017/CBO9780511810817
[16] Kirane M., Said-Houari B.: Existence and asymptotic stability of a viscoelastic wave equation with delay. Z. Angew. Math. Phys. 62, 1065-1082 (2011) · Zbl 1242.35163 · doi:10.1007/s00033-011-0145-0
[17] LasieckaLu Y.: Asymptotic stability of finite energy in Navier Stokes-elastic wave interaction. Semigroup Forum 82, 61-82 (2011) · Zbl 1210.35179 · doi:10.1007/s00233-010-9281-7
[18] Lasiecka I., Lu Y.: Interface feedback control stabilization of a nonlinear fluid-structure interaction. Nonlinear Anal. 75, 1449-1460 (2012) · Zbl 1231.35149 · doi:10.1016/j.na.2011.04.018
[19] Lasiecka I., Seidman T.: Strong stability of elastic control systems with dissipative saturating feedback. Syst. Control Lett. 48, 243-252 (2013) · Zbl 1157.93479 · doi:10.1016/S0167-6911(02)00269-4
[20] Lions J.L., Magenes E.: Non-Homogeneous Boundary Value Problems And Applications, Vol. 1. Springer, New York (1972) · Zbl 0223.35039 · doi:10.1007/978-3-642-65161-8
[21] Lyubich Y.I., Phong V.Q.: Asymptotic stability of linear differential equations in Banach spaces. Studia Matematica LXXXVII, 37-42 (1988) · Zbl 0639.34050
[22] Lu Y.: Stabilization of a fluid structure interaction with nonlinear damping. Control Cybern. 42, 155-181 (2013) · Zbl 1318.93074
[23] Lu Y.: Uniform decay rates for the energy in nonlinear fluid structure interaction with monotone viscous damping. Palest. J. Math. 2, 215-232 (2013) · Zbl 1343.35193
[24] Nicaise S., Pignotti C.: Stability and instability results of the wave equation with a delay term in boundary or internal feedbacks. SIAM J. Control Optim. 45, 1561-1585 (2006) · Zbl 1180.35095 · doi:10.1137/060648891
[25] Peralta G., Propst G.: Stability and boundary controllability of a linearized model of flow in an elastic tube. ESAIM: Control Optim. Calc. Var. 21, 583-601 (2015) · Zbl 1330.35033 · doi:10.1051/cocv/2014039
[26] Quarteroni A., Valli A.: Numerical Approximations of Partial Differential Equations. Springer, Heidelberg (2008) · Zbl 1151.65339
[27] Sohr H.: The Navier-Stokes Equations: An Elementary Functional Analytic Approach. Birkhäuser, Berlin (2001) · Zbl 0983.35004 · doi:10.1007/978-3-0348-0551-3
[28] Temam R.: Navier-Stokes Equations, Theory and Numerical Analysis. AMS Chelsea Publishing, Providence (2001) · Zbl 0981.35001
[29] Tucsnak M., Weiss G.: Observation and Control for Operator Semigroups. Birkhäuser-Verlag, Basel (2009) · Zbl 1188.93002 · doi:10.1007/978-3-7643-8994-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.