×

Existence and iterative approximations of nonoscillatory solutions for second order nonlinear neutral delay difference equations. (English) Zbl 1422.39013

Summary: This paper investigates the second order nonlinear neutral delay difference equation \[ \begin{aligned} & \Delta \bigl[a_{n}\Delta (x_{n}+bx_{n-\tau}-d_{n} ) \bigr] +\Delta f (n,x_{f_{1}(n)},x_{f_{2}(n)},\dots,x_{f_{k}(n)} ) \\& {} +g (n,x_{g_{1}(n)},x_{g_{2}(n)},\dots,x_{g_{k}(n)} )=c_{n},\quad n\geq n_{0}. \end{aligned} \] By using the Banach fixed point theorem and some new techniques, we establish the existence results of uncountably many bounded nonoscillatory solutions for the above equation, propose a few Mann type iterative approximation schemes with errors and obtain several errors estimates between the iterative approximations and the nonoscillatory solutions. Examples that cannot be solved by known results are given to illustrate our theorems.

MSC:

39A10 Additive difference equations
39A20 Multiplicative and other generalized difference equations

References:

[1] Agarwal, RP: Difference Equations and Inequalities, 2nd edn. Dekker, New York (2000) · Zbl 0952.39001
[2] Cheng, SS; Li, HJ; Patula, WT, Bounded and zero convergent solutions of second order difference equations, J. Math. Anal. Appl., 141, 463-483, (1989) · Zbl 0698.39002 · doi:10.1016/0022-247X(89)90191-1
[3] González, C; Jiménez-Melado, A, Set-contractive mappings and difference equations in Banach spaces, Comput. Math. Appl., 45, 1235-1243, (2003) · Zbl 1057.39001 · doi:10.1016/S0898-1221(03)00094-4
[4] Guo, ZM; Yu, JS, Multiplicity results for periodic solutions to second-order difference equations, J. Dyn. Differ. Equ., 18, 943-960, (2006) · Zbl 1109.39007 · doi:10.1007/s10884-006-9042-1
[5] Jinfa, C, Existence of a nonoscillatory solution of a second-order linear neutral difference equation, Appl. Math. Lett., 20, 892-899, (2007) · Zbl 1144.39004 · doi:10.1016/j.aml.2006.06.021
[6] Li, X; Zhu, D, New results for the asymptotic behavior of a nonlinear second-order difference equation, Appl. Math. Lett., 16, 627-633, (2003) · Zbl 1049.39007 · doi:10.1016/S0893-9659(03)00057-0
[7] Liu, Z; Kang, SM; Ume, JS, Existence of uncountably many bounded nonoscillatory solutions and their iterative approximations for second order nonlinear neutral delay difference equations, Appl. Math. Comput., 213, 554-576, (2009) · Zbl 1182.39002 · doi:10.1016/j.amc.2009.03.050
[8] Liu, Z; Xu, YG; Kang, SM, Global solvability for a second order nonlinear neutral delay difference equation, Comput. Math. Appl., 57, 587-595, (2009) · Zbl 1165.39307 · doi:10.1016/j.camwa.2008.09.050
[9] Ma, M; Guo, Z, Homoclinic orbits and subharmonics for nonlinear second order difference equations, Nonlinear Anal., 67, 1737-1745, (2007) · Zbl 1120.39007 · doi:10.1016/j.na.2006.08.014
[10] Meng, Q; Yan, J, Bounded oscillation for second-order nonlinear difference equations in critical and non-critical states, J. Comput. Appl. Math., 211, 156-172, (2008) · Zbl 1138.39012 · doi:10.1016/j.cam.2006.11.008
[11] Tang, XH, Bounded oscillation of second-order neutral difference equations of unstable type, Comput. Math. Appl., 44, 1147-1156, (2002) · Zbl 1035.39009 · doi:10.1016/S0898-1221(02)00222-5
[12] Thandapani, E; Arul, R; Raja, PS, Bounded oscillation of second order unstable neutral type difference equations, J. Appl. Math. Comput., 16, 79-90, (2004) · Zbl 1066.39013 · doi:10.1007/BF02936152
[13] Thandapani, E; Arul, R; Raja, PS, The asymptotic behavior of nonoscillatory solutions of nonlinear neutral type difference equations, Math. Comput. Model., 39, 1457-1465, (2004) · Zbl 1067.39018 · doi:10.1016/j.mcm.2004.07.004
[14] Yu, JS; Guo, ZM; Zou, XF, Positive periodic solutions of second order self-adjoint difference equations, J. Lond. Math. Soc., 71, 146-160, (2005) · Zbl 1073.39009 · doi:10.1112/S0024610704005939
[15] Liu, LS, Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl., 194, 114-125, (1995) · Zbl 0872.47031 · doi:10.1006/jmaa.1995.1289
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.