×

Electrophoretic trajectories of non-uniformly charged particles in viscoelastic fluids: the weak surface charge limit. (English) Zbl 1525.76113

Summary: Electrophoretic motion of a particle carrying a weak but arbitrary non-uniform surface charge density in an Oldroyd-B fluid is analysed here in the thin electrical double layer limit. A semi-analytical generic framework, based on regular perturbation, the Lamb’s general solutions and the generalized reciprocal theorem, assuming the viscoelastic effects to remain subdominant, is developed for tracing the particle’s trajectory using its instantaneous translational velocity and accounting for the temporal evolution of its surface charge driven by rotation. Our results reveal that in a viscoelastic medium, non-uniformly charged particles may generally follow distinct trajectories depending on their sizes, which is in stark contrast to Newtonian fluids. By considering the multipole moments of the surface charge, we show that the particle may initially rotate until its dipole moment becomes collinear with the imposed electric field, and the nature of the surrounding medium does not alter this fundamental behaviour. However, during the course of rotation, the excess polymeric stresses within the electrical double layer and the bulk may cause the particle to migrate perpendicular to the applied field, by forcing the multipole moments of the surface charge to interact with each other. The final steady-state trajectory of the particle and its possible migration normal to the applied electric field are also largely governed by these interactions and more specifically, presence of non-zero quadrupole moments. The present framework may be helpful towards designing tools for particle separation and sorting, relevant in many biological applications.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
76A10 Viscoelastic fluids
76M45 Asymptotic methods, singular perturbations applied to problems in fluid mechanics
Full Text: DOI

References:

[1] Afonso, A.M., Alves, M.A. & Pinho, F.T.2009Analytical solution of mixed electro-osmotic/pressure driven flows of viscoelastic fluids in microchannels. J. Non-Newtonian Fluid Mech.159 (1-3), 50-63. · Zbl 1274.76085
[2] Aggarwal, N. & Sarkar, K.2008Effects of matrix viscoelasticity on viscous and viscoelastic drop deformation in a shear flow. J. Fluid Mech.601, 63-84. · Zbl 1151.76370
[3] Ajdari, A.1995Electro-osmosis on inhomogeneously charged surfaces. Phys. Rev. Lett.75 (4), 755.
[4] Ajdari, A.1996Generation of transverse fluid currents and forces by an electric field: electro-osmosis on charge-modulated and undulated surfaces. Phys. Rev. E53 (5), 4996.
[5] Alshareedah, I. & Banerjee, P.R.2022A programmable landscape of viscoelastic protein-RNA condensates. Biophys. J.121 (3), 355a.
[6] Anderson, J.L.1985Effect of nonuniform zeta potential on particle movement in electric fields. J. Colloid Interface Sci.105 (1), 45-54.
[7] Ardekani, A.M., Joseph, D.D., Dunn-Rankin, D. & Rangel, R.H.2009Particle-wall collision in a viscoelastic fluid. J. Fluid Mech.633, 475-483. · Zbl 1183.76005
[8] Babnigg, G. & Giometti, C.S.2004Gelbank: a database of annotated two-dimensional gel electrophoresis patterns of biological systems with completed genomes. Nucleic Acids Res.32 (suppl_1), D582-D585.
[9] Bayati, P. & Najafi, A.2019Electrophoresis of active Janus particles. J. Chem. Phys.150 (23), 234902.
[10] Baygents, J.C. & Saville, D.A.1991Electrophoresis of drops and bubbles. J. Chem. Soc. Faraday Trans.87 (12), 1883-1898.
[11] Bender, C.M., Orszag, S. & Orszag, S.A.1999Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory, vol. 1. Springer Science & Business Media. · Zbl 0938.34001
[12] Bird, R.B., Armstrong, R.C. & Hassager, O.1987Dynamics of Polymeric Liquids. Vol. 1: Fluid Mechanics. John Wiley and Sons Inc.
[13] Brust, M., Schaefer, C., Doerr, R., Pan, L., Garcia, M., Arratia, P.E. & Wagner, C.2013Rheology of human blood plasma: viscoelastic versus Newtonian behavior. Phys. Rev. Lett.110 (7), 078305.
[14] Chen, G.Y. & Keh, H.J.2014Start-up of electrophoresis of an arbitrarily oriented dielectric cylinder. Electrophoresis35 (18), 2560-2565.
[15] Choudhary, A., Li, D., Renganathan, T., Xuan, X. & Pushpavanam, S.2020Electrokinetically enhanced cross-stream particle migration in viscoelastic flows. J. Fluid Mech.898, A20. · Zbl 1460.76021
[16] Das, S., Jalilvand, Z., Popescu, M.N., Uspal, W.E., Dietrich, S. & Kretzschmar, I.2020Floor- or ceiling-sliding for chemically active, gyrotactic, sedimenting Janus particles. Langmuir36 (25), 7133-7147.
[17] D’Avino, G., Tuccillo, T., Maffettone, P.L., Greco, F. & Hulsen, M.A.2010Numerical simulations of particle migration in a viscoelastic fluid subjected to shear flow. Comput. Fluids39 (4), 709-721. · Zbl 1242.76338
[18] Fair, M.C. & Anderson, J.L.1989Electrophoresis of nonuniformly charged ellipsoidal particles. J. Colloid Interface Sci.127 (2), 388-400.
[19] Ghosal, S.2006Electrokinetic flow and dispersion in capillary electrophoresis. Annu. Rev. Fluid Mech.38, 309-338. · Zbl 1098.76075
[20] Ghosh, U., Mukherjee, S. & Chakraborty, S.2021Electrophoretic motion of a non-uniformly charged particle in a viscoelastic medium in thin electrical double layer limit. J. Fluid Mech.924, A41. · Zbl 1473.76076
[21] Gomez-Solano, J.R., Blokhuis, A. & Bechinger, C.2016Dynamics of self-propelled Janus particles in viscoelastic fluids. Phys. Rev. Lett.116 (13), 138301.
[22] Goswami, P., Dhar, J., Ghosh, U. & Chakraborty, S.2017Solvent-mediated nonelectrostatic ion-ion interactions predicting anomalies in electrophoresis. Electrophoresis38 (5), 712-719.
[23] Griffiths, D.J.1962Introduction to Electrodynamics. Prentice Hall.
[24] Groisman, A., Enzelberger, M. & Quake, S.R.2003Microfluidic memory and control devices. Science300 (5621), 955-958.
[25] Happel, J. & Brenner, H.2012Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media, vol. 1. Springer Science & Business Media. · Zbl 0612.76032
[26] Ho, B.P. & Leal, L.G.1974Inertial migration of rigid spheres in two-dimensional unidirectional flows. J. Fluid Mech.65 (2), 365-400. · Zbl 0284.76076
[27] Ho, B.P. & Leal, L.G.1976Migration of rigid spheres in a two-dimensional unidirectional shear flow of a second-order fluid. J. Fluid Mech.76 (4), 783-799. · Zbl 0339.76057
[28] Hsu, J.-P., Huang, H.-T., Yeh, L.-H. & Tseng, S.2012Electrophoresis of a particle at an arbitrary surface potential and double layer thickness: importance of nonuniformly charged conditions. Langmuir28 (5), 2997-3004.
[29] Hsu, J.-P. & Yeh, L.-H.2007Effect of a charged boundary on electrophoresis in a Carreau fluid: a sphere at an arbitrary position in a spherical cavity. Langmuir23 (16), 8637-8646.
[30] Hsu, J.-P., Yeh, L.-H. & Ku, M.-H.2006Electrophoresis of a spherical particle along the axis of a cylindrical pore filled with a Carreau fluid. Colloid Polym. Sci.284 (8), 886-892.
[31] Jacqmin, D.2000Contact-line dynamics of a diffuse fluid interface. J. Fluid Mech.402, 57-88. · Zbl 0984.76084
[32] Kaigala, G.V., Hoang, V.N., Stickel, A., Lauzon, J., Manage, D., Pilarski, L.M. & Backhouse, C.J.2008An inexpensive and portable microchip-based platform for integrated RT-PCR and capillary electrophoresis. Analyst133 (3), 331-338.
[33] Karger, B.L., Cohen, A.S. & Guttman, A.1989High-performance capillary electrophoresis in the biological sciences. J. Chromatogr.492, 585-614.
[34] Khair, A.S., Posluszny, D.E. & Walker, L.M.2012Coupling electrokinetics and rheology: electrophoresis in non-Newtonian fluids. Phys. Rev. E85 (1), 016320.
[35] Khair, A.S. & Squires, T.M.2009The influence of hydrodynamic slip on the electrophoretic mobility of a spherical colloidal particle. Phys. Fluids21 (4), 042001. · Zbl 1183.76279
[36] Kim, B., Lee, S.S., Yoo, T.H. & Kim, J.M.2021Viscoelastic particle focusing in human biofluids. Electrophoresis42 (21-22), 2238-2245.
[37] Kremser, L., Blaas, D. & Kenndler, E.2004Capillary electrophoresis of biological particles: viruses, bacteria, and eukaryotic cells. Electrophoresis25 (14), 2282-2291.
[38] Kroo, L.A., Binagia, J.P., Eckman, N., Prakash, M. & Shaqfeh, E.S.G.2022A freely suspended robotic swimmer propelled by viscoelastic normal stresses. J. Fluid Mech.944, A20. · Zbl 1510.76227
[39] Kumar, V., Mukherjee, J., Sinha, S.K. & Ghosh, U.2022Combined electromechanically driven pulsating flow of nonlinear viscoelastic fluids in narrow confinements. J. R. Soc. Interface19 (189), 20210876.
[40] Kundu, P.K., Cohen, I.M. & Dowling, D.R.2015Fluid Mechanics. Academic.
[41] Leal, L.G.2007Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes, vol. 7. Cambridge University Press. · Zbl 1133.76001
[42] Lee, E., Chen, C.-T. & Hsu, J.-P.2005Electrophoresis of a rigid sphere in a Carreau fluid normal to a planar surface. J. Colloid Interface Sci.285 (2), 857-864.
[43] Lee, L.J., Madou, M.J., Koelling, K.W., Daunert, S., Lai, S., Koh, C.G., Juang, Y.-J., Lu, Y. & Yu, L.2001Design and fabrication of CD-like microfluidic platforms for diagnostics: polymer-based microfabrication. Biomed. Microdevices3 (4), 339-351.
[44] Li, D. & Xuan, X.2018Electrophoretic slip-tuned particle migration in microchannel viscoelastic fluid flows. Phys. Rev. Fluids3 (7), 074202.
[45] Li, G. & Koch, D.L.2020Electrophoresis in dilute polymer solutions. J. Fluid Mech.884, A9. · Zbl 1460.76027
[46] Li, G., Mckinley, G.H. & Ardekani, A.M.2015Dynamics of particle migration in channel flow of viscoelastic fluids. J. Fluid Mech.785, 486-505. · Zbl 1381.76019
[47] Lu, X., Dubose, J., Joo, S.W., Qian, S. & Xuan, X.2015Viscoelastic effects on electrokinetic particle focusing in a constricted microchannel. Biomicrofluidics9 (1), 014108.
[48] Lu, X., Patel, S., Zhang, M., Woo Joo, S., Qian, S., Ogale, A. & Xuan, X.2014An unexpected particle oscillation for electrophoresis in viscoelastic fluids through a microchannel constriction. Biomicrofluidics8 (2), 021802.
[49] Mahapatra, B. & Bandopadhyay, A.2021Numerical analysis of combined electroosmotic-pressure driven flow of a viscoelastic fluid over high zeta potential modulated surfaces. Phys. Fluids33 (1), 012001.
[50] Malekanfard, A., Ko, C.-H., Li, D., Bulloch, L., Baldwin, A., Wang, Y.-N., Fu, L.-M. & Xuan, X.2019Experimental study of particle electrophoresis in shear-thinning fluids. Phys. Fluids31 (2), 022002.
[51] Masoud, H. & Stone, H.A.2019The reciprocal theorem in fluid dynamics and transport phenomena. J. Fluid Mech.879, P1. · Zbl 1430.76129
[52] Molotilin, T.Y., Lobaskin, V. & Vinogradova, O.I.2016Electrophoresis of Janus particles: a molecular dynamics simulation study. J. Chem. Phys.145 (24), 244704.
[53] Mozaffari, A., Sharifi-Mood, N., Koplik, J. & Maldarelli, C.2018Self-propelled colloidal particle near a planar wall: a Brownian dynamics study. Phys. Rev. Fluids3 (1), 014104.
[54] Mukherjee, S. & Sarkar, K.2011Viscoelastic drop falling through a viscous medium. Phys. Fluids23 (1), 013101.
[55] Nasouri, B. & Golestanian, R.2020Exact axisymmetric interaction of phoretically active Janus particles. J. Fluid Mech.905, A13. · Zbl 1460.76851
[56] Natu, A. & Ghosh, U.2021Electrokinetics of polymeric fluids in narrow rectangular confinements. Soft Matt.17 (38), 8712-8729.
[57] Neoh, H.-M., Tan, X.-E., Sapri, H.F. & Tan, T.L.2019Pulsed-field gel electrophoresis (PFGE): a review of the ‘gold standard’ or bacteria typing and current alternatives. Infect. Genet. Evol.74, 103935.
[58] Nosenko, V., Luoni, F., Kaouk, A., Rubin-Zuzic, M. & Thomas, H.2020Active Janus particles in a complex plasma. Phys. Rev. Res.2 (3), 033226.
[59] Ohshima, H.1996Henry’s function for electrophoresis of a cylindrical colloidal particle. J. Colloid Interface Sci.180 (1), 299-301.
[60] Ohshima, H.2006Theory of Colloid and Interfacial Phenomena. Elsevier.
[61] Pak, O.S. & Lauga, E.2014Generalized squirming motion of a sphere. J. Engng Maths88 (1), 1-28. · Zbl 1359.76362
[62] Phan-Thien, N.1983Coaxial-disk flow of an Oldroyd-B fluid: exact solution and stability. J. Non-Newtonian Fluid Mech.13 (3), 325-340. · Zbl 0567.76013
[63] Posluszny, D.2014 Electrophoresis of colloidal particles in shear-thinning polymer solutions. PhD Thesis, Carnegie Mellon University.
[64] Pozrikidis, C. & Jankowski, D.1997Introduction to Theoretical and Computational Fluid Dynamics, vol. 675. Oxford University Press. · Zbl 0886.76002
[65] Ramautar, R., Demirci, A. & De Jong, G.J.2006Capillary electrophoresis in metabolomics. TrAC Trend. Anal. Chem.25 (5), 455-466.
[66] Saville, D.A.1977Electrokinetic effects with small particles. Annu. Rev. Fluid Mech.9 (1), 321-337. · Zbl 0396.76079
[67] Schnitzer, O., Frankel, I. & Yariv, E.2014Electrophoresis of bubbles. J. Fluid Mech.753, 49-79. · Zbl 1329.76395
[68] Schnitzer, O. & Yariv, E.2012Strong-field electrophoresis. J. Fluid Mech.701, 333-351. · Zbl 1248.76157
[69] Schnitzer, O. & Yariv, E.2014Nonlinear electrophoresis at arbitrary field strengths: small-Dukhin-number analysis. Phys. Fluids26 (12), 122002.
[70] Schnitzer, O., Zeyde, R., Yavneh, I. & Yariv, E.2013Weakly nonlinear electrophoresis of a highly charged colloidal particle. Phys. Fluids25 (5), 052004.
[71] Skalak, R., Ozkaya, N. & Skalak, T.C.1989Biofluid mechanics. Annu. Rev. Fluid Mech.21 (1), 167-200. · Zbl 0662.76160
[72] Tan, W. & Masuoka, T.2005Stokes’ first problem for an Oldroyd-B fluid in a porous half space. Phys. Fluids17 (2), 023101. · Zbl 1187.76517
[73] Tang, S., Liu, S., Guo, Y., Liu, X. & Jiang, S.2014Recent advances of ionic liquids and polymeric ionic liquids in capillary electrophoresis and capillary electrochromatography. J. Chromatogr. A1357, 147-157.
[74] Turkoz, E., Lopez-Herrera, J.M., Eggers, J., Arnold, C.B. & Deike, L.2018Axisymmetric simulation of viscoelastic filament thinning with the Oldroyd-B model. J. Fluid Mech.851, R2. · Zbl 1421.76014
[75] Velegol, D.2002Electrophoresis of randomly charged particles. Electrophoresis23 (13), 2023-2028.
[76] Walther, A. & Müller, A.H.E.2008Janus particles. Soft Matt.4 (4), 663-668.
[77] Westermeier, R.2016Electrophoresis in Practice: A Guide to Methods and Applications of DNA and Protein Separations. John Wiley & Sons.
[78] Yang, S., Guo, F., Kiraly, B., Mao, X., Lu, M., Leong, K.W. & Huang, T.J.2012Microfluidic synthesis of multifunctional Janus particles for biomedical applications. Lab on a Chip12 (12), 2097-2102.
[79] Yariv, E.2006‘Force-free’ electrophoresis?Phys. Fluids18 (3), 031702.
[80] Ye, C., Sinton, D., Erickson, D. & Li, D.2002Electrophoretic motion of a circular cylindrical particle in a circular cylindrical microchannel. Langmuir18 (23), 9095-9101.
[81] Yoon, B.J.1991Electrophoretic motion of spherical particles with a nonuniform charge distribution. J. Colloid Interface Sci.142 (2), 575-581.
[82] Yuan, D., Zhao, Q., Yan, S., Tang, S.-Y., Alici, G., Zhang, J. & Li, W.2018Recent progress of particle migration in viscoelastic fluids. Lab on a Chip18 (4), 551-567.
[83] Zhang, J., Grzybowski, B.A. & Granick, S.2017Janus particle synthesis, assembly, and application. Langmuir33 (28), 6964-6977.
[84] Zhao, C. & Yang, C.2011An exact solution for electroosmosis of non-Newtonian fluids in microchannels. J. Non-Newtonian Fluid Mech.166 (17-18), 1076-1079. · Zbl 1282.76044
[85] Zhao, C. & Yang, C.2013Electrokinetics of non-Newtonian fluids: a review. Adv. Colloid Interface Sci.201, 94-108.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.