×

Product-convolution of R-symmetric unimodal distributions: an analogue of Wintner’s theorem. (English) Zbl 1420.60021

Summary: B. V. Gnedenko and A. N. Kolmogorov in their acclaimed monograph [Предельные распределения для сумм независимых случайных величин (Russian). Moskva-Leningrad: Gosudarstv. Izdat. Tekhn.-Teor. Lit. (1949; Zbl 0056.36001)] claimed that the convolutions of unimodal distributions are unimodal. Kai Lai Chung, in an appendix of his English translation of the monograph, by a counterexample, refuted the claim and further noted A. Wintner’s [Asymptotic distributions and infinite convolutions. Ann Arbor, MI: Edwards Brothers (1938)] result that the convolutions of symmetric unimodal distributions are symmetric unimodal. In this note, it is shown that the product-convolutions of unimodal distributions are not unimodal either. Furthermore, an analogue of Wintner’s result [loc. cit.] based on the relatively recent notion of R-symmetry [G. S. Mudholkar and H. Wang, J. Stat. Plann. Inference 137, No. 11, 3655–3671 (2007; Zbl 1123.60008)] is offered by showing that the product-convolutions of R-symmetric unimodal distributions are R-symmetric unimodal.

MSC:

60E05 Probability distributions: general theory
Full Text: DOI

References:

[1] Anderson, TW, The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities, Proc. Amer. Math. Soc., 6, 170-176 (1955) · Zbl 0066.37402 · doi:10.1090/S0002-9939-1955-0069229-1
[2] Baker, R., Probabilistic applications of the Schlomilch transformation, Comm. Statist. Theory Methods, 37, 2162-2176 (2008) · Zbl 1156.60011 · doi:10.1080/03610920801892014
[3] Bertin, E.M.J., Cuculescu, I., Theodorescu, R., 1997. Unimodality of Probability Measures. Kluwer Academic Publishers. · Zbl 0876.60001 · doi:10.1007/978-94-015-8808-9
[4] Chaubey, YP; Mudholkar, GS; Jones, MC, Reciprocal symmetry, unimodality and Khintchine’s theorem, Proc. R. Soc. A, 466, 2079-2096 (2010) · Zbl 1194.60016 · doi:10.1098/rspa.2009.0482
[5] Chernoff, H., Estimation of the mode, Ann. Inst. Statist. Math., 16, 31-41 (1964) · Zbl 0212.21802 · doi:10.1007/BF02868560
[6] Cohen, A.; Sackrowitz, HB, Unbiasedness of tests for homogeneity, Ann. Statist., 15, 805-816 (1987) · Zbl 0626.62025 · doi:10.1214/aos/1176350376
[7] Cuculescu, I.; Theodorescu, R., Multiplicative strong unimodality, Austral. New Zealand J. Statist., 40, 205-214 (1998) · Zbl 0940.62013 · doi:10.1111/1467-842X.00023
[8] Dalenius, T., The mode — a neglected statistical parameter, J. Roy. Statist. Soc. Ser. A, 128, 110-117 (1965) · doi:10.2307/2343439
[9] Gupta, S.; Anderson, TW; Mudholkar, GS, Monotonicity of the power functions of some tests of the multivariate linear hypothesis, Ann. of Math. Stat., 35, 200-205 (1964) · Zbl 0211.50404 · doi:10.1214/aoms/1177703742
[10] Dharmadhikari, S., Joag-dev, K., 1988. Unimodality, Convexity, and Applications. Academic Press, San Diego, CA. · Zbl 0646.62008
[11] Gnedenko, B.V., Kolmogorov, A.N., 1949. Limit Distributions for Sums of Independent Random Variables (Russian), Moscow-Leningrad; Translated, annotated, and revised by Kai Lai Chung, with appendices by Joseph L. Doob and Pao Lo Hsu. Reading, Mass: Addison-Wesley, 1968.
[12] Grenander, U., Some direct estimates of the mode, Ann. of Math. Stat., 36, 131-138 (1965) · Zbl 0131.17702 · doi:10.1214/aoms/1177700277
[13] Ibragimov, IA, On the composition of unimodal distributions, Theor. Probab. Appl., 1, 255-260 (1956) · doi:10.1137/1101021
[14] Jones, MC, On reciprocal symmetry, J. Statist. Plann. Inference, 138, 3039-3043 (2008) · Zbl 1140.62011 · doi:10.1016/j.jspi.2007.11.006
[15] Jones, MC; Arnold, BC, Distributions that are both log-symmetric and R-symmetric, Electron. J. Stat., 2, 1300-1308 (2008) · Zbl 1320.62026 · doi:10.1214/08-EJS301
[16] Khintchine, AY, On unimodal distributions, Izv. Nauchno-Issled. Inst. mat. Meh. Tomsk. Gos. Univ., 2, 1-7 (1938)
[17] Laha, RG, On a class of unimodal distributions, Proc. Amer. Math. Soc., 12, 181-184 (1961) · Zbl 0096.34103 · doi:10.1090/S0002-9939-1961-0121826-3
[18] Marshall, A.W., Olkin, I., 1979. Inequalities: Theory of Majorization and Its Applications. Academic Press, New York. · Zbl 0437.26007
[19] Medgyessy, P., On the unimodality of discrete distributions, Period. Math. Hungar., 2, 245-257 (1972) · Zbl 0246.60012 · doi:10.1007/BF02018665
[20] Mudholkar, GS, A class of tests with monotone power functions for two problems in multivariate statistical analysis, Ann. of Math. Stat., 36, 1794-1801 (1965) · Zbl 0144.42203 · doi:10.1214/aoms/1177699808
[21] Mudholkar, GS, The integral of an invariant unimodal function over an invariant convex set — an inequality and applications, Proc. Amer. Math. Soc., 17, 1327-1333 (1966) · Zbl 0163.06902
[22] Mudholkar, GS, G-peakedness comparisons for random vectors, Ann. Inst. Statist. Math., 24, 127-135 (1972) · Zbl 0351.60022 · doi:10.1007/BF02479744
[23] Mudholkar, GS; Awadalla, S., Estimation of the mode (2010)
[24] Mudholkar, GS; Natarajan, R., The Inverse Gaussian models: Analogues of symmetry, skewness and kurtosis, Ann. Inst. Statist. Math., 54, 138-154 (2002) · Zbl 0993.62003 · doi:10.1023/A:1016173923461
[25] Mudholkar, GS; Wang, H., IG-symmetry and R-symmetry: Interrelations and Applications to the Inverse Gaussian Theory, J. Statist. Plann. Inference, 137, 3655-3671 (2007) · Zbl 1123.60008 · doi:10.1016/j.jspi.2007.03.041
[26] Mudholkar, GS; Wang, H., R-Symmetry and the Power Function of the Tests for Inverse Gaussian Mean, Comm. Statist. Theory Methods, 38, 2178-2186 (2009) · Zbl 1172.62015 · doi:10.1080/03610920802499496
[27] Parzen, E., On estimation of a probability density function and mode, Ann. of Math. Stat., 33, 1065-1076 (1962) · Zbl 0116.11302 · doi:10.1214/aoms/1177704472
[28] Schrödinger, E., Zur theorie der fall-und steigversuche an teilchenn mit Brownsche bewegung, Physikalische Zeitschrift, 16, 289-295 (1915)
[29] Seshadri, V., 1993. The Inverse Gaussian Distribution: A Case Study in Exponential Families. Oxford University Press, New York.
[30] Seshadri, V., 1999. The Inverse Gaussian Distribution: Statistical Theory and Applications. Springer, New York. · Zbl 0942.62011 · doi:10.1007/978-1-4612-1456-4
[31] Smoluchowski, Mv, Notiz über die Berechnung der Brownschen Molekularbewegung bei des Ehrenhaft-Millikanschen Versuchsanordnung, Physikalische Zeitschrift, 16, 318-321 (1915)
[32] Tong, Y.L., 1980. Probability inequalities in multivariate distributions. Academic Press, New York. · Zbl 0455.60003
[33] Tweedie, MCK, Inverse statistical variates, Nature, 155, 453 (1945) · Zbl 0063.07892 · doi:10.1038/155453a0
[34] Tweedie, MCK, Statistical properties of inverse Gaussian distributions, Virginia J. Sci., 7, 160-165 (1956)
[35] Ushakov, N.G., 1999. Selected Topics in Characteristic Functions, VSP, Utrecht. · Zbl 0999.60500 · doi:10.1515/9783110935981
[36] Wald, A., 1947. Sequential Analysis. Wiley, New York. · Zbl 0041.26303
[37] Wintner, A., 1938. Asymptotic Distributions and Infinite Convolutions. Edwards Brothers, Ann Arbor, Michigan.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.