×

Exploring new models in all detail with SARAH. (English) Zbl 1366.83027

Summary: I give an overview about the features the Mathematica package SARAH provides to study new models. In general, SARAH can handle a wide range of models beyond the MSSM coming with additional chiral superfields, extra gauge groups, or distinctive features like Dirac gaugino masses. All of these models can be implemented in a compact form in SARAH and are easy to use: SARAH extracts all analytical properties of the given model like two-loop renormalization group equations, tadpole equations, mass matrices, and vertices. Also one- and two-loop corrections to tadpoles and self-energies can be obtained. For numerical calculations SARAH can be interfaced with other tools to get the mass spectrum, to check flavour or dark matter constraints, and to test the vacuum stability or to perform collider studies. In particular, the interface to SPheno allows a precise prediction of the Higgs mass in a given model comparable to MSSM precision by incorporating the important two-loop corrections. I show in great detail with the example of the B-L-SSM how SARAH together with SPheno, HiggsBounds/HiggsSignals, FlavorKit, Vevacious, CalcHep, MicrOmegas, WHIZARD, and MadGraph can be used to study all phenomenological aspects of a model.

MSC:

83C47 Methods of quantum field theory in general relativity and gravitational theory
81T13 Yang-Mills and other gauge theories in quantum field theory
81V22 Unified quantum theories

References:

[1] Ramond, P., Dual theory for free fermions, Physical Review D, 3, 2415-2418 (1971) · doi:10.1103/physrevd.3.2415
[2] Wess, J.; Zumino, B., Supergauge transformations in four dimensions, Nuclear Physics B, B70, 39-50 (1974)
[3] Volkov, D. V.; Akulov, V. P., Is the neutrino a goldstone particle?, Physics Letters B, 46, 1, 109-110 (1973) · doi:10.1016/0370-2693(73)90490-5
[4] Weinberg, S., Implications of dynamical symmetry breaking, Physical Review D, 13, 4, 974-996 (1976) · doi:10.1103/physrevd.13.974
[5] Weinberg, S., Implications of dynamical symmetry breaking: an addendum, Physical Review D, 19, 4, 1277-1280 (1979) · doi:10.1103/physrevd.19.1277
[6] Goldberg, H., Constraint on the photino mass from cosmology, Physical Review Letters, 50, 19, 1419-1422 (1983) · doi:10.1103/physrevlett.50.1419
[7] Ellis, J.; Hagelin, J. S.; Nanopoulos, D. V.; Olive, K.; Srednicki, M., Supersymmetric relics from the big bang, Nuclear Physics, Section B, 238, 2, 453-476 (1984) · doi:10.1016/0550-3213(84)90461-9
[8] Drees, M.; Nojiri, M. M., Neutralino relic density in minimal \(N = 1\) supergravity, Physical Review D, 47, 376-408 (1993) · doi:10.1103/PhysRevD.47.376
[9] Dimopoulos, S.; Raby, S.; Wilczek, F., Supersymmetry and the scale of unification, Physical Review D, 24, 6, 1681-1683 (1981) · doi:10.1103/PhysRevD.24.1681
[10] Ibanez, L. E.; Ross, G. G., Low-energy predictions in supersymmetric grand unified theories, Physics Letters B, 105, 6, 439-442 (1981) · doi:10.1016/0370-2693(81)91200-4
[11] Marciano, W. J.; Senjanović, G., Predictions of supersymmetric grand unified theories, Physical Review D, 25, 11, 3092-3095 (1982) · doi:10.1103/physrevd.25.3092
[12] Einhorn, M.; Jones, D., The weak mixing angle and unification mass in supersymmetric SU(5), Nuclear Physics B, 196, 3, 475-488 (1982) · doi:10.1016/0550-3213(82)90502-8
[13] Amaldi, U.; de Boer, W.; Furstenau, H., Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP, Physics Letters B, 260, 3-4, 447-455 (1991) · doi:10.1016/0370-2693(91)91641-8
[14] Langacker, P.; Luo, M.-X., Implications of precision electroweak experiments for \(m_t, \rho_0, \sin^2 \theta w\), and grand unification, Physical Review D, 44, 817-822 (1991) · doi:10.1103/physrevd.44.817
[15] Ellis, J. R.; Kelley, S.; Nanopoulos, D. V., Probing the desert using gauge coupling unification, Physics Letters B, 260, 1-2, 131-137 (1991) · doi:10.1016/0370-2693(91)90980-5
[16] Martin, S. P., Two-loop effective potential for a general renormalizable theory and softly broken supersymmetry, Physical Review D, 65, 11 (2002) · doi:10.1103/PhysRevD.65.116003
[17] Ibanez, L. E.; Ross, G. G., \( \text{SU}(2)_{\text{L}} \times \text{U}(1)\) symmetry breaking as a radiative effect of supersymmetry breaking in GUTs, Physics Letters B, 110, 215-220 (1982) · doi:10.1016/0370-2693(82)91239-4
[18] Witten, E., Dynamical breaking of supersymmetry, Nuclear Physics B, 188, 3, 513-554 (1981) · Zbl 1258.81046 · doi:10.1016/0550-3213(81)90006-7
[19] Witten, E., Constraints on supersymmetry breaking, Nuclear Physics B, B202, 2, 253-316 (1982) · doi:10.1016/0550-3213(82)90071-2
[20] Hall, L.; Lykken, J.; Weinberg, S., Supergravity as the messenger of supersymmetry breaking, Physical Review D, 27, 10, 2359-2378 (1983) · doi:10.1103/physrevd.27.2359
[21] Nilles, H. P., Supersymmetry, supergravity and particle physics, Physics Reports, 110, 1-2, 1-162 (1984) · doi:10.1016/0370-1573(84)90008-5
[22] Alvarez-Gaume, L.; Polchinski, J.; Wise, M. B., Minimal low-energy supergravity, Nuclear Physics B, 221, 2, 495-523 (1983) · doi:10.1016/0550-3213(83)90591-6
[23] Kane, G. L.; Kolda, C.; Roszkowski, L.; Wells, J. D., Study of constrained minimal supersymmetry, Physical Review D, 49, 11, article 6173 (1994) · doi:10.1103/physrevd.49.6173
[24] Dine, M.; Nelson, A. E.; Nir, Y.; Shirman, Y., New tools for low energy dynamical supersymmetry breaking, Physical Review D, 53, 2658-2669 (1996) · doi:10.1103/PhysRevD.53.2658
[25] Dine, M.; Nelson, A. E.; Shirman, Y., Low-energy dynamical supersymmetry breaking simplified, Physical Review D, 51, 1362-1370 (1995) · doi:10.1103/PhysRevD.51.1362
[26] Giudice, G.; Rattazzi, R., Theories with gauge-mediated supersymmetry breaking, Physics Reports, 322, 6, 419-499 (1999) · Zbl 1106.81317 · doi:10.1016/S0370-1573(99)00042-3
[27] Randall, L.; Sundrum, R., Out of this world supersymmetry breaking, Nuclear Physics B, 557, 1-2, 79-118 (1999) · Zbl 1068.81608 · doi:10.1016/s0550-3213(99)00359-4
[28] Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Physics Letters B, 716, 1, 30-61 (2012) · doi:10.1016/j.physletb.2012.08.021
[29] Aad, G.; Abajyanm, T.; Abbott, B., Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Physics Letters B, 716, 1, 1-29 (2012) · doi:10.1016/j.physletb.2012.08.020
[30] Ellwanger, U.; Hugonie, C.; Teixeira, A. M., The next-to-minimal supersymmetric standard model, Physics Reports, 496, 1-2, 1-77 (2010) · doi:10.1016/j.physrep.2010.07.001
[31] Ellwanger, U.; Hugonie, C., The upper bound on the lightest Higgs mass in the NMSSM revisited, Modern Physics Letters A, 22, 21, 1581-1590 (2007) · doi:10.1142/S0217732307023870
[32] Ma, E., Exceeding the MSSM Higgs mass bound in a special class of U(1) gauge models, Physics Letters B, 705, 4, 320-323 (2011) · doi:10.1016/j.physletb.2011.10.021
[33] Zhang, Y.; An, H.; Ji, X.-D.; Mohapatra, R. N., Light Higgs mass bound in supersymmetric left-right models, Physical Review D, 78 (2008) · doi:10.1103/PhysRevD.78.011302
[34] Hirsch, M.; Malinsky, M.; Porod, W.; Reichert, L.; Staub, F., Hefty MSSM-like light Higgs in extended gauge models, Journal of High Energy Physics, 2012, 2, article 84 (2012) · Zbl 1309.81329 · doi:10.1007/JHEP02(2012)084
[35] Dreiner, H. K.; Kramer, M.; Tattersall, J., How low can SUSY go? Matching, monojets and compressed spectra, Europhysics Letters, 99, aritlce 6 (2012) · doi:10.1209/0295-5075/99/61001
[36] Bhattacherjee, B.; Evans, J. L.; Ibe, M.; Matsumoto, S.; Yanagida, T. T., Natural supersymmetry’s last hope: \(R\)-parity violation via \(U D D\) operators, Physical Review D, 87, 11 (2013) · doi:10.1103/PhysRevD.87.115002
[37] Kim, J. S.; Rolbiecki, K.; Sakurai, K.; Tattersall, J., ‘Stop’ that ambulance! New physics at the LHC?, Journal of High Energy Physics, 2014, 12, article 10 (2014) · doi:10.1007/JHEP12(2014)010
[38] Giudice, G. F.; Han, T.; Wang, K.; Wang, L.-T., Nearly degenerate gauginos and dark matter at the LHC, Physical Review D, 81 (2010) · doi:10.1103/PhysRevD.81.115011
[39] Gori, S.; Jung, S.; Wang, L.-T., Cornering electroweakinos at the LHC, Journal of High Energy Physics, 2013, 10, article 191 (2013) · doi:10.1007/JHEP10(2013)191
[40] Han, C.; Kobakhidze, A.; Liu, N.; Saavedra, A.; Wu, L.; Yang, J. M., Probing light higgsinos in natural SUSY from monojet signals at the LHC, Journal of High Energy Physics, 2014, 2, article 49 (2014)
[41] Schwaller, P.; Zurita, J., Compressed electroweakino spectra at the LHC, Journal of High Energy Physics, 2014, 3, article 060 (2014) · doi:10.1007/JHEP03(2014)060
[42] Baer, H.; Mustafayev, A.; Tata, X., Monojets and monophotons from light Higgsino pair production at LHC14, Physical Review D, 89, 5 (2014) · doi:10.1103/PhysRevD.89.055007
[43] Han, Z.; Kribs, G. D.; Martin, A.; Menon, A., Hunting quasidegenerate Higgsinos, Physical Review D, 89, 7 (2014) · doi:10.1103/physrevd.89.075007
[44] Bramante, J.; Delgado, A.; Elahi, F.; Martin, A.; Ostdiek, B., Catching sparks from well-forged neutralinos, Physical Review D, 90, 9 (2014) · doi:10.1103/PhysRevD.90.095008
[45] Han, C.; Wu, L.; Yang, J. M.; Zhang, M.; Zhang, Y., New approach for detecting a compressed bino/wino at the LHC, Physical Review D, 91 (2015) · doi:10.1103/PhysRevD.91.055030
[46] Baer, H.; Mustafayev, A.; Tata, X., Monojet plus soft dilepton signal from light higgsino pair production at LHC14, Physical Review D, 90, 11 (2014) · doi:10.1103/physrevd.90.115007
[47] Gori, S.; Jung, S.; Wang, L.-T.; Wells, J. D., Prospects for electroweakino discovery at a 100 TeV hadron collider, Journal of High Energy Physics, 2014, 12, article 108 (2014) · doi:10.1007/JHEP12(2014)108
[48] Bramante, J.; Fox, P. J.; Martin, A.; Ostdiek, B.; Plehn, T.; Schell, T.; Takeuchi, M., Relic neutralino surface at a 100 TeV collider, Physical Review D, 91 (2014) · doi:10.1103/PhysRevD.91.054015
[49] Han, C.; Kim, D.; Munir, S.; Park, M., Accessing the core of naturalness, nearly degenerate higgsinos, at the LHC, Journal of High Energy Physics, 2015, 4, article 132 (2015) · doi:10.1007/JHEP04(2015)132
[50] Gonzalez-Garcia, M.; Maltoni, M.; Schwetz, T., Updated fit to three neutrino mixing: status of leptonic CP violation, Journal of High Energy Physics, 2014, article 52, 1411 (2014) · doi:10.1007/JHEP11(2014)052
[51] Hisano, J.; Nojiri, M. M.; Shimizu, Y.; Tanaka, M., Lepton-flavor violation in the left-handed slepton production at future lepton colliders, Physical Review D, 60 (1999) · doi:10.1103/PhysRevD.60.055008
[52] Rossi, A., Supersymmetric seesaw mechanism without singlet neutrinos: neutrino masses and lepton-flavor violation, Physical Review D, 66 (2002) · doi:10.1103/PhysRevD.66.075003
[53] Buckley, M. R.; Murayama, H., How can we test the neutrino mass seesaw mechanism experimentally?, Physical Review Letters, 97, 23 (2006) · doi:10.1103/PhysRevLett.97.231801
[54] Hirsch, M.; Kaneko, S.; Porod, W., Supersymmetric type-II seesaw mechanism: CERN LHC and lepton flavor violating phenomenology, Physical Review D, 78 (2008) · doi:10.1103/physrevd.78.093004
[55] Hirsch, M.; Valle, J. W. F.; Porod, W.; Romao, J. C.; del Moral, A. V., Probing minimal supergravity in the type-I seesaw mechanism with lepton flavor violation at the CERN LHC, Physical Review D, 78 (2008) · doi:10.1103/PhysRevD.78.013006
[56] Borzumati, F.; Yamashita, T., Minimal supersymmetric SU(5) model with nonrenormalizable operators seesaw mechanism and violation of flavour and CP, Progress of Theoretical Physics, 124, 5, 761-868 (2010) · Zbl 1207.81179 · doi:10.1143/ptp.124.761
[57] Esteves, J.; Romao, J.; Villanova del, A.; Moral, M.; Valle, J., Flavour violation at the LHC: type-I versus type-II seesaw in minimal supergravity, Journal of High Energy Physics, 5, article 3 (2009) · doi:10.1088/1126-6708/2009/05/003
[58] Esteves, J.; Romao, J. C.; Hirsch, M.; Staub, F.; Porod, W., Supersymmetric type-III seesaw mechanism: Lepton flavor violating decays and dark matter, Physical Review D, 83 (2011) · doi:10.1103/PhysRevD.83.013003
[59] Malinsky, M.; Romao, J.; Valle, J., Supersymmetric SO(10) seesaw mechanism with low \(B - L\) scale, Physical Review Letters, 95 (2005) · doi:10.1103/physrevlett.95.161801
[60] Abada, A.; Das, D.; Vicente, A.; Weiland, C., Enhancing lepton flavour violation in the supersymmetric inverse seesaw beyond the dipole contribution, Journal of High Energy Physics, 2012, 9, article 15 (2012) · doi:10.1007/JHEP09(2012)015
[61] Dev, P. S. B.; Mondal, S.; Mukhopadhyaya, B.; Roy, S., Phenomenology of light sneutrino dark matter in cMSSM/mSUGRA with inverse seesaw, Journal of High Energy Physics, 2012, 9, article 110 (2012) · doi:10.1007/JHEP09(2012)110
[62] Abada, A.; Krauss, M. E.; Porod, W.; Staub, F.; Vicente, A.; Weiland, C., Lepton flavor violation in low-scale seesaw models: SUSY and non-SUSY contributions, Journal of High Energy Physics, 2014, 11, article 48 (2014) · doi:10.1007/JHEP11(2014)048
[63] Peccei, R. D.; Quinn, H. R., CP conservation in the presence of pseudoparticles, Physical Review Letters, 38, 25, 1440-1443 (1977) · doi:10.1103/physrevlett.38.1440
[64] Covi, L.; Kim, H.-B.; Kim, J. E.; Roszkowski, L., Axinos as dark matter, Journal of High Energy Physics, 2001, 5, article 033 (2001) · doi:10.1088/1126-6708/2001/05/033
[65] Kim, H. B.; Kim, J. E., Late decaying axino as CDM and its lifetime bound, Physics Letters B, 527, 1-2, 18-22 (2002) · doi:10.1016/S0370-2693(01)01507-6
[66] Covi, L.; Kim, J. E., Axinos as dark matter particles, New Journal of Physics, 11 (2009) · doi:10.1088/1367-2630/11/10/105003
[67] Choi, K.-Y.; Covi, L.; Kim, J. E.; Roszkowski, L., Axino cold dark matter revisited, Journal of High Energy Physics, 2012, 4, article 106 (2012) · doi:10.1007/JHEP04(2012)106
[68] Bae, K. J.; Chun, E. J.; Im, S. H., Cosmology of the DFSZ axino, Journal of Cosmology and Astroparticle Physics, 2012, 3, article 013 (2012) · doi:10.1088/1475-7516/2012/03/013
[69] Bae, K. J.; Choi, K.; Im, S. H., Effective interactions of axion supermultiplet and thermal production of axino dark matter, Journal of High Energy Physics, 2011, 8, article 65 (2011) · Zbl 1298.81429
[70] Strumia, A., Thermal production of axino dark matter, Journal of High Energy Physics, 2010, 6, article 36 (2010) · Zbl 1290.83069 · doi:10.1007/JHEP06(2010)036
[71] Dine, M.; Fischler, W.; Srednicki, M., A simple solution to the strong CP problem with a harmless axion, Physics Letters B, 104, 3, 199-202 (1981) · doi:10.1016/0370-2693(81)90590-6
[72] Zhitnitsky, A., On possible suppression of the axion hadron interactions, Soviet Journal of Nuclear Physics, 31, 260-263 (1980)
[73] Dreiner, H. K.; Staub, F.; Ubaldi, L., From the unification scale to the weak scale: a self consistent supersymmetric Dine-Fischler-Srednicki-Zhitnitsky axion model, Physical Review D, 90 (2014) · doi:10.1103/physrevd.90.055016
[74] Kim, J. E.; Nilles, H. P., The \(μ\)-problem and the strong CP-problem, Physics Letters B, 138, 1-3, 150-154 (1984) · doi:10.1016/0370-2693(84)91890-2
[75] Athron, P.; King, S.; Miller, D.; Moretti, S.; Nevzorov, R., Predictions of the constrained exceptional supersymmetric standard model, Physics Letters B, 681, 5, 448-456 (2009) · doi:10.1016/j.physletb.2009.10.051
[76] Athron, P.; King, S.; Miller, D.; Moretti, S.; Nevzorov, R., Constrained exceptional supersymmetric standard model, Physical Review D, 80 (2009) · doi:10.1103/physrevd.80.035009
[77] Arbelaez, C.; Fonseca, R. M.; Hirsch, M.; Romao, J. C., Supersymmetric SO(10)-inspired GUTs with sliding scales, Physical Review D, 87, 7 (2013) · doi:10.1103/physrevd.87.075010
[78] Arbelez, C.; Hirsch, M.; Malinsk, M.; Romo, J. C., LHC-scale left-right symmetry and unification, Physical Review D, 89, 3 (2014) · doi:10.1103/PhysRevD.89.035002
[79] Fayet, P., Massive gluinos, Physics Letters B, 78, 4, 417-420 (1978) · doi:10.1016/0370-2693(78)90474-4
[80] Polchinski, J.; Susskind, L., Breaking of supersymmetry at intermediate energy, Physical Review D, 26, 12, 3661-3673 (1982) · doi:10.1103/physrevd.26.3661
[81] Hall, L.; Randall, L., \(U(1)_R\) symmetric supersymmetry, Nuclear Physics B, 352, 2, 289-308 (1991) · doi:10.1016/0550-3213(91)90444-3
[82] Fox, P. J.; Nelson, A. E.; Weiner, N., Dirac gaugino masses and supersoft supersymmetry breaking, Journal of High Energy Physics, 2002, 8, article 035 (2002)
[83] Nelson, A. E.; Rius, N.; Sanz, V.; Unsal, M., The minimal supersymmetric model without a \(μ\) term, Journal of High Energy Physics, 2002, 8, article 039 (2002) · Zbl 1226.81307 · doi:10.1088/1126-6708/2002/08/039
[84] Antoniadis, I.; Delgado, A.; Benakli, K.; Quirós, M.; Tuckmantel, M., Splitting extended supersymmetry, Physics Letters B, 634, 2-3, 302-306 (2006) · Zbl 1247.81455 · doi:10.1016/j.physletb.2006.01.010
[85] Antoniadis, I.; Benakli, K.; Delgado, A.; Quiros, M., A new Gauge mediation theory, Advanced Studies in Theoretical Physics, 2, 645-672 (2008)
[86] Amigo, S. D. L.; Blechman, A. E.; Fox, P. J.; Poppitz, E., \(R\)-symmetric gauge mediation, Journal of High Energy Physics, 2009, 1, article 018 (2009)
[87] Plehn, T.; Tait, T. M., Seeking sgluons, Journal of Physics G: Nuclear and Particle Physics, 36, 7 (2009) · doi:10.1088/0954-3899/36/7/075001
[88] Benakli, K.; Goodsell, M. D., Dirac gauginos in general gauge mediation, Nuclear Physics B, 816, 1-2, 185-203 (2009) · Zbl 1194.81153 · doi:10.1016/j.nuclphysb.2009.03.002
[89] Belanger, G.; Benakli, K.; Goodsell, M.; Moura, C.; Pukhov, A., Dark matter with Dirac and Majorana gaugino masses, Journal of Cosmology and Astroparticle Physics, 2009, 8, article 027 (2009) · doi:10.1088/1475-7516/2009/08/027
[90] Benakli, K.; Goodsell, M., Dirac gauginos and kinetic mixing, Nuclear Physics B, 830, 1-2, 315-329 (2010) · Zbl 1206.81128
[91] Choi, S. Y.; Kalinowski, J.; Kim, J. M.; Popenda, E., Scalar gluons and dirac gluinos at the LHC, Acta Physica Polonica B, 40, 11, 2913-2922 (2009)
[92] Benakli, K.; Goodsell, M. D., Dirac gauginos, gauge mediation and unification, Nuclear Physics B, 840, 1-2, 1-28 (2010) · Zbl 1206.81128 · doi:10.1016/j.nuclphysb.2010.06.018
[93] Choi, S. Y.; Choudhury, D.; Freitas, A.; Kalinowski, J.; Kim, J. M.; Zerwas, P. M., Dirac neutralinos and electroweak scalar bosons of \(N = 1 / N = 2\) hybrid supersymmetry at colliders, Journal of High Energy Physics, 2010, 8, article 025 (2010) · Zbl 1291.81434 · doi:10.1007/JHEP08(2010)025
[94] Carpenter, L. M., Dirac gauginos, negative supertraces and gauge mediation, Journal of High Energy Physics, 2012, 9, article 102 (2012)
[95] Kribs, G. D.; Okui, T.; Roy, T. S., Viable gravity-mediated supersymmetry breaking, Physical Review D, 82, 11 (2010) · doi:10.1103/PhysRevD.82.115010
[96] Abel, S.; Goodsell, M., Easy Dirac gauginos, Journal of High Energy Physics, 2011, 6, article 064 (2011) · Zbl 1298.81360 · doi:10.1007/JHEP06(2011)064
[97] Davies, R.; March-Russell, J.; McCullough, M., A supersymmetric one Higgs doublet model, Journal of High Energy Physics, 2011, article 108 (2011) · Zbl 1250.81106 · doi:10.1007/jhep04(2011)108
[98] Benakli, K., Dirac gauginos: a user manual, Fortschritte der Physik, 59, 11-12, 1079-1082 (2011) · doi:10.1002/prop.201100071
[99] Benakli, K.; Goodsell, M. D.; Maier, A.-K., Generating \(\mu\) and \(B \mu\) in models with Dirac gauginos, Nuclear Physics B, 851, 3, 445-461 (2011) · Zbl 1229.81325 · doi:10.1016/j.nuclphysb.2011.06.001
[100] Kalinowski, J., Higgs bosons of \(R\)-symmetric supersymmetric theories
[101] Frugiuele, C.; Gregoire, T., Making the sneutrino a Higgs particle with a \(U(1)_R\) lepton number, Physical Review D, 85, 1 (2012) · doi:10.1103/physrevd.85.015016
[102] Itoyama, H.; Maru, N., D-term dynamical supersymmetry breaking generating split \(N = 2\) gaugino masses of mixed Majorana-Dirac type, International Journal of Modern Physics A, 27, 6 (2012) · Zbl 1260.81225 · doi:10.1142/S0217751X1250159X
[103] Rehermann, K.; Wells, C. M., Weak scale leptogenesis, R-symmetry, and a displaced Higgs
[104] Bertuzzo, E.; Frugiuele, C., Fitting neutrino physics with a \(\text{U} \text{(1)}_R\) lepton number, Journal of High Energy Physics, 2012, 5, article 100 (2012) · doi:10.1007/JHEP05(2012)100
[105] Davies, R., Dirac gauginos and unification in F-theory, Journal of High Energy Physics, 2012, 10, article 10 (2012) · doi:10.1007/JHEP10(2012)010
[106] Argurio, R.; Bertolini, M.; Di Pietro, L.; Porri, F.; Redigolo, D., Holographic correlators for general gauge mediation, Journal of High Energy Physics, 2012, 8, article 86 (2012) · Zbl 1397.81128 · doi:10.1007/JHEP08(2012)086
[107] Fok, R.; Kribs, G. D.; Martin, A.; Tsai, Y., Electroweak baryogenesis in \(R\)-symmetric supersymmetry, Physical Review D, 87, 5 (2013) · doi:10.1103/PhysRevD.87.055018
[108] Argurio, R.; Bertolini, M.; Di Pietro, L.; Porri, F.; Redigolo, D., Exploring holographic general gauge mediation, Journal of High Energy Physics, 2012, 10, article 179 (2012) · Zbl 1397.81128
[109] Frugiuele, C.; Grégoire, T.; Kumar, P.; Ponton, E., ‘\(L = R\)’\(- \text{U}(1)_R\) as the origin of leptonic ‘RPV’, Journal of High Energy Physics, 2013, 3, article 156 (2013) · doi:10.1007/JHEP03(2013)156
[110] Frugiuele, C.; Grégoire, T.; Kumar, P.; Ponton, E., ‘\(L = R\)’\(- \text{U}(1)_R\) lepton number at the LHC, Journal of High Energy Physics, 2013, 5, article 12 (2013) · doi:10.1007/JHEP05(2013)012
[111] Benakli, K.; Goodsell, M. D.; Staub, F., Dirac gauginos and the 125 GeV higgs, Journal of High Energy Physics, 2013, 6, article 073 (2013)
[112] Itoyama, H.; Maru, N., \(D\)-term triggered dynamical supersymmetry breaking, Physical Review D, 88, 2 (2013) · doi:10.1103/PhysRevD.88.025012
[113] Chakraborty, S.; Roy, S., Higgs boson mass, neutrino masses and mixing and keV dark matter in an \(U(1)_R\)—lepton number model, Journal of High Energy Physics, 2014, 1, article 101 (2014) · doi:10.1007/JHEP01(2014)101
[114] Csaki, C.; Goodman, J.; Pavesi, R.; Shirman, Y., The \(m_D - b_M\) problem of Dirac gauginos and its solutions, Physical Review D, 89, 5 (2014) · doi:10.1103/physrevd.89.055005
[115] Itoyama, H.; Maru, N., 126 GeV Higgs boson associated with D-term triggered dynamical supersymmetry breaking · Zbl 1373.81417
[116] Beauchesne, H.; Gregoire, T., Electroweak precision measurements in supersymmetric models with a \(U(1)_R\) lepton number, Journal of High Energy Physics, 2014, 5, article 051 (2014) · doi:10.1007/JHEP05(2014)051
[117] Benakli, K., (Pseudo)goldstinos, SUSY fluids, Dirac gravitino and gauginos, EPJ Web of Conferences, 71 (2014) · doi:10.1051/epjconf/20147100012
[118] Bertuzzo, E.; Frugiuele, C.; Grégoire, T.; Pontón, E., Dirac gauginos, R symmetry and the 125 GeV Higgs, Journal of High Energy Physics, 2015, 4, article 089 (2015) · doi:10.1007/JHEP04(2015)089
[119] Alves, D. S. M.; Galloway, J.; McCullough, M.; Weiner, N., Goldstone gauginos
[120] Heikinheimo, M.; Kellerstein, M.; Sanz, V., How many supersymmetries?, Journal of High Energy Physics, 2012, 4, article 43 (2012) · Zbl 1348.81415 · doi:10.1007/JHEP04(2012)043
[121] Kribs, G. D.; Martin, A., Supersoft supersymmetry is super-safe, Physical Review D, 85 (2012) · doi:10.1103/PhysRevD.85.115014
[122] Alves, D. S. M.; Liu, J.; Weiner, N., Hiding missing energy in missing energy, Journal of High Energy Physics, 2015, 4, article 088 (2015) · doi:10.1007/JHEP04(2015)088
[123] Kribs, G. D.; Poppitz, E.; Weiner, N., Flavor in supersymmetry with an extended \(R\) symmetry, Physical Review D, 78 (2008) · doi:10.1103/physrevd.78.055010
[124] Fok, R., Expected limits on R-symmetric \(\mu \to e\) processes at project X
[125] Dudas, E.; Goodsell, M.; Heurtier, L.; Tziveloglou, P., Flavour models with Dirac and fake gluinos, Nuclear Physics B, 884, 632-671 (2014) · Zbl 1323.81115 · doi:10.1016/j.nuclphysb.2014.05.005
[126] Baer, H.; Chen, C.-H.; Munroe, R. B.; Paige, F. E.; Tata, X., Multichannel search for minimal supergravity at \(p p^-\) and \(e^+ e^-\) colliders, Physical Review D, 51, 1046-1050 (1995) · doi:10.1103/PhysRevD.51.1046
[127] Baer, H.; Paige, F. E.; Protopopescu, S. D.; Tata, X., ISAJET 7.69: a Monte Carlo event generator for \(p p, \overset{-}{p} p\), and \(e^= e^-\) reactions
[128] Baer, H.; Balazs, C.; Belyaev, A.; Dermisek, R.; Mafi, A.; Mustafayev, A., Study of viable models with non-universal gaugino mediation with CompHEP and ISAJET, Nuclear Instruments and Methods in Physics Research Section A, 502, 2-3, 560-563 (2003) · doi:10.1016/S0168-9002(03)00502-3
[129] Baer, H.; Paige, F. E.; Protopopescu, S. D.; Tata, X., ISAJET 7.48: a Monte Carlo event generator for \(p p, \overset{-}{p} p\), and \(e^+ e^-\) interactions
[130] Paige, F. E.; Proto pescu, S. D.; Baer, H.; Tata, X., ISAJET 7.40: a Monte Carlo event generator for \(p p, \overset{-}{p} p\), and \(e^+ e^-\) reactions
[131] Paige, F. E.; Protopopescu, S. D.; Baer, H.; Tata, X., ISAJET 7.37: a Monte Carlo event generator for pp, \( \overset{-}{p} p\), and \(e^+ e^-\) interactions
[132] Baer, H.; Paige, F. E.; Protopopescu, S. D.; Tata, X., Simulating supersymmetry with ISAJET 7.0/ ISASUSY 1
[133] Djouadi, A.; Kneur, J.-L.; Moultaka, G., SuSpect: a fortran code for the supersymmetric and higgs particle spectrum in the MSSM, Computer Physics Communications, 176, 6, 426-455 (2007) · Zbl 1196.81018 · doi:10.1016/j.cpc.2006.11.009
[134] Allanach, B. C., SOFTSUSY: a program for calculating supersymmetric spectra, Computer Physics Communications, 143, 3, 305-331 (2002) · Zbl 1009.81588 · doi:10.1016/S0010-4655(01)00460-X
[135] Allanach, B.; Bernhardt, M., Including \(R\)-parity violation in the numerical computation of the spectrum of the minimal supersymmetric standard model: SOFTSUSY3.0, Computer Physics Communications, 181, 1, 232-245 (2010) · Zbl 1205.82009 · doi:10.1016/j.cpc.2009.09.015
[136] Allanach, B.; Bednyakov, A.; Ruiz de Austri, R., Higher order corrections and unification in the minimal supersymmetric standard model: SOFTSUSY3.5.0, Computer Physics Communications, 189, 192-206 (2014) · Zbl 1344.81161 · doi:10.1016/j.cpc.2014.12.006
[137] Porod, W., SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at \(e^+ e^-\) colliders, Computer Physics Communications, 153, 2, 275-315 (2003) · doi:10.1016/S0010-4655(03)00222-4
[138] Porod, W.; Staub, F., SPheno 3.1: extensions including flavour, CP-phases and models beyond the MSSM, Computer Physics Communications, 183, 11, 2458-2469 (2012) · doi:10.1016/j.cpc.2012.05.021
[139] Heinemeyer, S.; Hollik, W.; Weiglein, G., FeynHiggs: a program for the calculation of the masses of the neutral \(C\)-even Higgs bosons in the MSSM, Computer Physics Communications, 124, 1, 76-89 (2000) · Zbl 0946.81506 · doi:10.1016/s0010-4655(99)00364-1
[140] Hahn, T.; Heinemeyer, S.; Hollik, W.; Rzehak, H.; Weiglein, G., FeynHiggs: a program for the calculation of MSSM Higgs-boson observables—version 2.6.5, Computer Physics Communications, 180, 8, 1426-1427 (2009) · Zbl 1198.81015 · doi:10.1016/j.cpc.2009.02.014
[141] Staub, F., Sarah · Zbl 1366.83027
[142] Staub, F., From superpotential to model files for FeynArts and CalcHep/CompHep, Computer Physics Communications, 181, 6, 1077-1086 (2010) · Zbl 1215.81008
[143] Staub, F., Automatic calculation of supersymmetric renormalization group equations and loop corrections, Computer Physics Communications, 182, 3, 808-833 (2011) · Zbl 1214.81168 · doi:10.1016/j.cpc.2010.11.030
[144] Staub, F., SARAH 3.2: dirac gauginos, UFO output, and more, Computer Physics Communications, 184, 7, 1792-1809 (2013) · doi:10.1016/j.cpc.2013.02.019
[145] Staub, F., SARAH 4: a tool for (not only SUSY) model builders, Computer Physics Communications, 185, 6, 1773-1790 (2014) · Zbl 1348.81026 · doi:10.1016/j.cpc.2014.02.018
[146] Porod, W.; Staub, F.; Vicente, A., A flavor kit for BSM models, The European Physical Journal C, 74, 8, article 2992 (2014) · doi:10.1140/epjc/s10052-014-2992-2
[147] Goodsell, M. D.; Nickel, K.; Staub, F., Two-Loop Higgs mass calculations in supersymmetric models beyond the MSSM with SARAH and SPheno, The European Physical Journal C, 75, article 32 (2015) · doi:10.1140/epjc/s10052-014-3247-y
[148] Goodsell, M.; Nickel, K.; Staub, F., Generic two-loop Higgs mass calculation from a diagrammatic approach, The European Physical Journal C, 75, article 290 (2015) · doi:10.1140/epjc/s10052-015-3494-6
[149] Pukhov, A., CalcHEP 2.3: MSSM, structure functions, event generation, batchs, and generation of matrix elements for other packages
[150] Boos, E. E.; Dubinin, M. N.; Ilyin, V. A.; Pukhov, A. E.; Savrin, V. I., CompHEP—specialized package for automatic calculations of elementary particle decays and collisions
[151] Hahn, T., Generating feynman diagrams and amplitudes with FeynArts 3, Computer Physics Communications, 140, 3, 418-431 (2001) · Zbl 0994.81082 · doi:10.1016/S0010-4655(01)00290-9
[152] Hahn, T., FormCalc 6, Proceedings of Science, 8, 121 (2008)
[153] Kilian, W.; Ohl, T.; Reuter, J., WHIZARD: simulating multi-particle processes at LHC and ILC, The European Physical Journal C, 71, article 1742 (2011) · doi:10.1140/epjc/s10052-011-1742-y
[154] Moretti, M.; Ohl, T.; Reuter, J., O’Mega: an optimizing matrix element generator
[155] Degrande, C.; Duhr, C.; Fuks, B.; Grellscheid, D.; Mattelaer, O.; Reiter, T., UFO—the universal FeynRules output, Computer Physics Communications, 183, 6, 1201-1214 (2012) · doi:10.1016/j.cpc.2012.01.022
[156] Alwall, J.; Herquet, M.; Maltoni, F.; Mattelaer, O.; Stelzer, T., MadGraph 5: going beyond, Journal of High Energy Physics, 2011, 6, article 128 (2011) · Zbl 1298.81362 · doi:10.1007/JHEP06(2011)128
[157] Cullen, G.; Greiner, N.; Heinrich, G.; Luisoni, G.; Mastrolia, P.; Ossola, G.; Reiter, T.; Tramontano, F., Automated one-loop calculations with GoSam, The European Physical Journal C, 72, article 1889 (2012) · doi:10.1140/epjc/s10052-012-1889-1
[158] Gieseke, S.; Ribon, A.; Seymour, M. H.; Stephens, P.; Webber, B., Herwig++ 1.0: an event generator for \(e^+ e^-\) annihilation, Journal of High Energy Physics, 2, article 5 (2004) · doi:10.1088/1126-6708/2004/02/005
[159] Gieseke, S.; Grellscheid, D.; Hamilton, K.; Ribon, A.; Richardson, P.; Seymour, M. H.; Stephens, P.; Webber, B. R., Herwig++ 2.0 release note
[160] Bellm, J.; Gieseke, S.; Grellscheid, D., Herwig++ 2.7 release note
[161] Gleisberg, T.; Hoeche, S.; Krauss, F.; Schalicke, A.; Schumann, S.; Winter, J. C., SHERPA \(1.α\), a proof-of-concept version, Journal of High Energy Physics, 2004, 2, article 56 (2004) · doi:10.1088/1126-6708/2004/02/056
[162] Gleisberg, T.; Höche, S.; Krauss, F.; Schönherr, M.; Schumann, S.; Siegert, F.; Winter, J., Event generation with SHERPA 1.1, Journal of High Energy Physics, 2009, 2, article 007 (2009) · doi:10.1088/1126-6708/2009/02/007
[163] Höche, S.; Kuttimalai, S.; Schumann, S.; Siegert, F., Beyond standard model calculations with Sherpa, The European Physical Journal C, 75, article 135 (2015) · doi:10.1140/epjc/s10052-015-3338-4
[164] Bechtle, P.; Brein, O.; Heinemeyer, S.; Weiglein, G.; Williams, K. E., HiggsBounds: confronting arbitrary Higgs sectors with exclusion bounds from LEP and the Tevatron, Computer Physics Communications, 181, 1, 138-167 (2010) · Zbl 1205.82001 · doi:10.1016/j.cpc.2009.09.003
[165] Bechtle, P.; Brein, O.; Heinemeyer, S.; Weiglein, G.; Williams, K. E., HiggsBounds 2.0.0: confronting neutral and charged higgs sector predictions with exclusion bounds from LEP and the tevatron, Computer Physics Communications, 182, 12, 2605-2631 (2011) · Zbl 1205.82001 · doi:10.1016/j.cpc.2011.07.015
[166] Bechtle, P.; Heinemeyer, S.; Stl, O.; Stefaniak, T.; Weiglein, G., HiggsSignals: confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC, The European Physical Journal C, 74, article 2711 (2014) · doi:10.1140/epjc/s10052-013-2711-4
[167] Athron, P.; Park, J.-H.; Stöckinger, D.; Voigt, A., FlexibleSUSY—a spectrum generator generator for supersymmetric models, Computer Physics Communications, 190, 139-172 (2015) · doi:10.1016/j.cpc.2014.12.020
[168] Camargo-Molina, J.; O’Leary, B.; Porod, W.; Staub, F., Vevacious: a tool for finding the global minima of one-loop effective potentials with many scalars, The European Physical Journal C, 73, article 2588 (2013) · doi:10.1140/epjc/s10052-013-2588-2
[169] Stål, O.; Weiglein, G., Light NMSSM Higgs bosons in SUSY cascade decays at the LHC, Journal of High Energy Physics, 2012, 1, article 071 (2012) · doi:10.1007/JHEP01(2012)071
[170] Ender, K.; Graf, T.; Muhlleitner, M.; Rzehak, H., Analysis of the NMSSM Higgs boson masses at one-loop level, Physical Review D, 85 (2012) · doi:10.1103/PhysRevD.85.075024
[171] Aparicio, L.; Camara, P.; Cerdeno, D.; Ibanez, L.; Valenzuela, I., The NMSSM with F-theory unified boundary conditions, Journal of High Energy Physics, 2013, 2, article 084 (2013)
[172] Graf, T.; Gröber, R.; Mühlleitner, M.; Rzehak, H.; Walz, K., Higgs boson masses in the complex NMSSM at one-loop level, Journal of High Energy Physics, 2012, 10, article 122 (2012) · doi:10.1007/JHEP10(2012)122
[173] Schmidt-Hoberg, K.; Staub, F., Enhanced \(h\) → γγ rate in MSSM singlet extensions, Journal of High Energy Physics, 2012, 10, article 195 (2012)
[174] Schmidt-Hoberg, K.; Staub, F.; Winkler, M. W., Enhanced diphoton rates at Fermi and the LHC, Journal of High Energy Physics, 2013, 1, article 124 (2013) · doi:10.1007/JHEP01(2013)124
[175] Ross, G. G.; Schmidt-Hoberg, K.; Staub, F., The generalised NMSSM at one loop: fine tuning and phenomenology, Journal of High Energy Physics, 2012, 8, article 074 (2012) · doi:10.1007/JHEP08(2012)074
[176] Kaminska, A.; Ross, G. G.; Schmidt-Hoberg, K., Non-universal gaugino masses and fine tuning implications for SUSY searches in the MSSM and the GNMSSM, Journal of High Energy Physics, 2013, article 209 (2013) · doi:10.1007/JHEP11(2013)209
[177] Binjonaid, M. Y.; King, S. F., Naturalness of scale-invariant NMSSMs with and without extra matter, Physical Review D, 90, 5 (2014) · doi:10.1103/PhysRevD.90.055020
[178] Kaminska, A.; Ross, G. G.; Schmidt-Hoberg, K.; Staub, F., A precision study of the fine tuning in the DiracNMSSM, Journal of High Energy Physics, 2014, 6, article 153 (2014) · doi:10.1007/JHEP06(2014)153
[179] Muhlleitner, M.; Nhung, D. T.; Rzehak, H.; Walz, K., Two-loop contributions of the order \(O(\alpha_t \alpha_S)\) to the masses of the Higgs bosons in the CP-violating NMSSM, Journal of High Energy Physics, 2015, article 128 (2015) · doi:10.1007/JHEP05(2015)128
[180] Arina, C.; Martin-Lozano, V.; Nardini, G., Dark matter versus \(h \to \gamma \gamma\) and \(h \to \gamma Z\) with supersymmetric triplets, Journal of High Energy Physics, 2014, article 15 (2014) · doi:10.1007/JHEP08(2014)015
[181] Bandyopadhyay, P.; Huitu, K.; Keceli, A. S., Multi-lepton signatures of the triplet like charged Higgs at the LHC, Journal of High Energy Physics, 2015, 5, article 26 (2015) · doi:10.1007/JHEP05(2015)026
[182] List, J.; Vormwald, B., Bilinear \(R\) parity violation at the ILC: neutrino physics at colliders, The European Physical Journal C, 74, article 2720 (2014) · doi:10.1140/epjc/s10052-014-2720-y
[183] Dreiner, H.; Nickel, K.; Staub, F.; Vicente, A., New bounds on trilinear \(R\)-parity violation from lepton flavor violating observables, Physical Review D, 86 (2012) · doi:10.1103/physrevd.86.015003
[184] Dreiner, H.; Nickel, K.; Staub, F., \(B_{s, d}^0 \to \mu \overset{-}{\mu}\) and \(B \to X_s \gamma\) in the \(R\)-parity violating MSSM, Physical Review D, 88, 11 (2013) · doi:10.1103/PhysRevD.88.115001
[185] Biswas, S.; Chowdhury, D.; Han, S.; Lee, S. J., Explaining the lepton non-universality at the LHCb and CMS within a unified framework, Journal of High Energy Physics, 2015, article 142 (2015) · doi:10.1007/JHEP02(2015)142
[186] Allanach, B.; Biswas, S.; Mondal, S.; Mitra, M., Explaining a CMS eejj excess with \(R\)-parity violating supersymmetry and implications for neutrinoless double beta decay, Physical Review D, 91, 1 (2014) · doi:10.1103/PhysRevD.91.011702
[187] Chamoun, N.; Dreiner, H.; Staub, F.; Stefaniak, T., Resurrecting light stops after the 125 GeV Higgs in the baryon number violating CMSSM, Journal of High Energy Physics, 2014, 8, article 142 (2014)
[188] Dreiner, H. K.; Nickel, K.; Staub, F., On the two-loop corrections to the Higgs mass in trilinear \(R\)-parity violation, Physics Letters B, 742, 261-265 (2015) · doi:10.1016/j.physletb.2015.01.047
[189] Abada, A.; Figueiredo, A.; Romao, J.; Teixeira, A., Probing the supersymmetric type III seesaw: LFV at low-energies and at the LHC, Journal of High Energy Physics, 2011, 8, article 99 (2011) · doi:10.1007/JHEP08(2011)099
[190] Hirsch, M.; Porod, W.; Weiss, C.; Staub, F., Supersymmetric type-III seesaw mechanism: lepton flavor violation and LHC phenomenology, Physical Review D, 87 (2013) · doi:10.1103/physrevd.87.013010
[191] Banerjee, S.; Dev, P. S. B.; Mondal, S.; Mukhopadhyaya, B.; Roy, S., Invisible Higgs decay in a supersymmetric inverse seesaw model with light sneutrino dark matter, Journal of High Energy Physics, 2013, 10, article 221 (2013) · doi:10.1007/jhep10(2013)221
[192] Krauss, M. E.; Porod, W.; Staub, F.; Abada, A.; Vicente, A.; Weiland, C., Decoupling of heavy sneutrinos in low-scale seesaw models, Physical Review D, 90 (2014) · doi:10.1103/physrevd.90.013008
[193] De Romeri, V.; Hirsch, M., Sneutrino dark matter in low-scale seesaw scenarios, Journal of High Energy Physics, 2012, 12, article 106 (2012) · doi:10.1007/JHEP12(2012)106
[194] Boucenna, S. M.; Valle, J. W. F.; Vicente, A., Predicting charged lepton flavor violation from gauge symmetry
[195] Esteves, J.; Romao, J.; Hirsch, M.; Vicente, A.; Porod, W.; Staub, F., LHC and lepton flavour violation phenomenology of a left-right extension of the MSSM, Journal of High Energy Physics, 2010, 12, article 77 (2010) · Zbl 1294.81337 · doi:10.1007/JHEP12(2010)077
[196] Esteves, J.; Romao, J.; Hirsch, M.; Porod, W.; Staub, F.; Vicente, A., Dark matter and LHC phenomenology in a left-right supersymmetric model, Journal of High Energy Physics, 2012, 1, article 95 (2012) · Zbl 1294.81337 · doi:10.1007/JHEP01(2012)095
[197] De Romeri, V.; Hirsch, M.; Malinsky, M., Soft masses in supersymmetric SO(10) GUTs with low intermediate scales, Physical Review D, 84 (2011) · doi:10.1103/physrevd.84.053012
[198] Krauss, M. E.; Porod, W.; Staub, F., SO(10) inspired gauge-mediated supersymmetry breaking, Physical Review D, 88, 1 (2013) · doi:10.1103/PhysRevD.88.015014
[199] O’Leary, B.; Porod, W.; Staub, F., Mass spectrum of the minimal SUSY \(B - L\) model, Journal of High Energy Physics, 2012, 5, article 42 (2012) · doi:10.1007/JHEP05(2012)042
[200] Hirsch, M.; Porod, W.; Reichert, L.; Staub, F., Phenomenology of a supersymmetric \(U(1)_{B−L} × U(1)_R\) extension of the standard model with inverse seesaw mechanism, Physical Review D, 86, 9 (2012) · doi:10.1103/PhysRevD.86.093018
[201] Frank, M.; Mondal, S., Light neutralino dark matter in \(U(1)^\prime\) models, Physical Review D, 90, 7 (2014) · doi:10.1103/physrevd.90.075013
[202] Brooijmans, G.; Contino, R.; Fuks, B., Les Houches 2013: physics at TeV colliders: new physics working group report
[203] Corcella, G., Phenomenology of supersymmetric Z′ decays at the Large Hadron Collider
[204] Busbridge, D., Constrained Dirac gluino mediation
[205] Benakli, K.; Goodsell, M.; Staub, F.; Porod, W., Constrained minimal Dirac gaugino supersymmetric standard model, Physical Review D, 90, 4 (2014) · doi:10.1103/PhysRevD.90.045017
[206] Diener, P.; Kalinowski, J.; Kotlarski, W.; Stckinger, D., Higgs boson mass and electroweak observables in the MRSSM, Journal of High Energy Physics, 2014, 12, article 124 (2014) · doi:10.1007/JHEP12(2014)124
[207] Lalak, Z.; Lewicki, M.; Wells, J. D., Higgs boson mass and high-luminosity LHC probes of supersymmetry with vectorlike top quark, Physical Review D, 91 (2015) · doi:10.1103/PhysRevD.91.095022
[208] Athron, P.; King, S.; Miller, D.; Moretti, S.; Nevzorov, R., Constrained exceptional supersymmetric standard model with a Higgs signal near 125 GeV, Physical Review D, 86 (2012) · doi:10.1103/physrevd.86.095003
[209] Alves, D. S.; Fox, P. J.; Weiner, N., Supersymmetry with a sister Higgs boson, Physical Review D, 91, 5 (2015) · doi:10.1103/PhysRevD.91.055003
[210] Bharucha, A.; Goudelis, A.; McGarrie, M., En-gauging naturalness, The European Physical Journal C, 74, article 2858 (2014) · doi:10.1140/epjc/s10052-014-2858-7
[211] Ding, R.; Li, T.; Staub, F.; Tian, C.; Zhu, B., The supersymmetric standard models with a pseudo-dirac gluino from hybrid \(F\)− and \(D\)−term supersymmetry breakings
[212] Brmmer, F.; McGarrie, M.; Weiler, A., Light third-generation squarks from flavour gauge messengers, Journal of High Energy Physics, 2014, 4, article 78 (2014) · doi:10.1007/JHEP04(2014)078
[213] Ding, R.; Li, T.; Staub, F.; Zhu, B., Focus point supersymmetry in extended gauge mediation, Journal of High Energy Physics, 2014, 3, article 130 (2014) · doi:10.1007/JHEP03(2014)130
[214] Louis, J.; Schmidt-Hoberg, K.; Zarate, L., Dilaton domination in the MSSM and its singlet extensions, Physics Letters B, 735, 1-6 (2014) · doi:10.1016/j.physletb.2014.05.056
[215] Ding, R.; Wang, L.; Zhu, B., Neutralino dark matter in gauge mediation after run I of LHC and LUX, Physics Letters B, 733, 373-379 (2014) · doi:10.1016/j.physletb.2014.05.007
[216] Kyae, B.; Shin, C. S., Precise focus point scenario for a natural Higgs boson in the MSSM, Physical Review D, 90, 3 (2014) · doi:10.1103/PhysRevD.90.035023
[217] Abel, S.; McGarrie, M., Natural supersymmetry and dynamical flavour with meta-stable vacua, Journal of High Energy Physics, 2014, article 145, 07 (2014) · doi:10.1007/JHEP07(2014)145
[218] Ün, C. S.; Tanyldz, H.; Kerman, S.; Solmaz, L., Generalized soft breaking leverage for the MSSM, Physical Review D, 91 (2014) · doi:10.1103/PhysRevD.91.105033
[219] Fichet, S.; Herrmann, B.; Stoll, Y., Tasting the SU(5) nature of supersymmetry at the LHC, Journal of High Energy Physics, 2015, 5, article 91 (2015) · Zbl 1345.81143 · doi:10.1007/JHEP05(2015)091
[220] Camargo-Molina, J.; Garbrecht, B.; O’Leary, B.; Porod, W.; Staub, F., Constraining the natural MSSM through tunneling to color-breaking vacua at zero and non-zero temperature, Physics Letters B, 737, 156-161 (2014) · doi:10.1016/j.physletb.2014.08.036
[221] Chattopadhyay, U.; Dey, A., Exploring MSSM for charge and color breaking and other constraints in the context of Higgs@125 GeV, Journal of High Energy Physics, 2014, 11, article 161 (2014) · doi:10.1007/JHEP11(2014)161
[222] Ellwanger, U.; Hugonie, C., NMSPEC: a fortran code for the sparticle and Higgs masses in the NMSSM with GUT scale boundary conditions, Computer Physics Communications, 177, 4, 399-407 (2007) · doi:10.1016/j.cpc.2007.05.001
[223] Allanach, B. C.; Athron, P.; Tunstall, L. C.; Voigt, A.; Williams, A. G., Next-to-minimal SOFTSUSY, Computer Physics Communications, 185, 9, 2322-2339 (2014) · Zbl 1344.81007 · doi:10.1016/j.cpc.2014.04.015
[224] Baglio, J.; Gröber, R.; Mühlleitner, M.; Nhung, D. T.; Rzehak, H.; Spira, M.; Streicher, J.; Walz, K., NMSSMCALC: a program package for the calculation of loop-corrected Higgs boson masses and decay widths in the (complex) NMSSM, Computer Physics Communications, 185, 12, 3372-3391 (2014) · doi:10.1016/j.cpc.2014.08.005
[225] Goodsell, M. D.; Nickel, K.; Staub, F., On the two-loop corrections to the Higgs masses in the NMSSM, Physical Review D, 91, 3 (2014) · doi:10.1103/PhysRevD.91.035021
[226] Staub, F.; Porod, W.; Herrmann, B., The electroweak sector of the NMSSM at the one-loop level, Journal of High Energy Physics, 2010, 10, article 40 (2010) · Zbl 1291.81470 · doi:10.1007/JHEP10(2010)040
[227] Ibanez, L. E.; Ross, G. G., Discrete gauge symmetry anomalies, Physics Letters B, 260, 3-4, 291-295 (1991) · doi:10.1016/0370-2693(91)91614-2
[228] Ibáñez, L. E.; Ross, G. G., Discrete gauge symmetries and the origin of baryon and lepton number conservation in supersymmetric versions of the standard model, Nuclear Physics. B, 368, 1, 3-37 (1992) · doi:10.1016/0550-3213(92)90195-h
[229] Banks, T.; Dine, M., Note on discrete gauge anomalies, Physical Review D, 45, 4, 1424-1427 (1992) · doi:10.1103/physrevd.45.1424
[230] Dreiner, H. K.; Luhn, C.; Thormeier, M., What is the discrete gauge symmetry of the MSSM?, Physical Review D, 73 (2006) · doi:10.1103/PhysRevD.73.075007
[231] Dreiner, H. K.; Luhn, C.; Murayama, H.; Thormeier, M., Baryon triality and neutrino masses from an anomalous flavor U (1), Nuclear Physics B, 774, 1-3, 127-167 (2007) · Zbl 1117.81384 · doi:10.1016/j.nuclphysb.2007.03.028
[232] Fonseca, R. M., Calculating the renormalisation group equations of a SUSY model with Susyno, Computer Physics Communications, 183, 10, 2298-2306 (2012) · doi:10.1016/j.cpc.2012.05.017
[233] Martin, S. P., A supersymmetry primer · Zbl 1106.81320
[234] Fayet, P.; Iliopoulos, J., Spontaneously broken supergauge symmetries and goldstone spinors, Physics Letters B, 51, 5, 461-464 (1974) · doi:10.1016/0370-2693(74)90310-4
[235] Holdom, B., Two U(1)’s and \(ϵ\) charge shifts, Physics Letters B, 166, 2, 196-198 (1986) · doi:10.1016/0370-2693(86)91377-8
[236] Goodsell, M. D., Two-loop RGEs with Dirac gaugino masses, Journal of High Energy Physics, 2013, 1, article 66 (2013) · doi:10.1007/JHEP01(2013)066
[237] Hall, L. J., Grand unification of effective gauge theories, Nuclear Physics B, 178, 1, 75-124 (1981) · doi:10.1016/0550-3213(81)90498-3
[238] Weinberg, S., Baryon- and lepton-nonconserving processes, Physical Review Letters, 43, 21, 1566-1570 (1979) · doi:10.1103/PhysRevLett.43.1566
[239] Weinberg, S., Varieties of baryon and lepton nonconservation, Physical Review D, 22, article 1694 (1980) · doi:10.1103/physrevd.22.1694
[240] Adler, S. L.; Bardeen, W. A., Absence of higher-order corrections in the anomalous axial-vector divergence equation, Physical Review, 182, 5, 1517-1536 (1969) · doi:10.1103/physrev.182.1517
[241] Witten, E., An SU(2) anomaly, Physics Letters B, 117, 5, 324-328 (1982) · doi:10.1016/0370-2693(82)90728-6
[242] Martin, S. P.; Vaughn, M. T., Two-loop renormalization group equations for soft supersymmetry-breaking couplings, Physical Review D, 50, article 2282 (1994) · doi:10.1103/physrevd.50.2282
[243] Yamada, Y., Two-loop renormalization group equations for soft supersymmetry-breaking scalar interactions: supergraph method, Physical Review D, 50, 5, 3537-3545 (1994) · doi:10.1103/PhysRevD.50.3537
[244] Jack, I.; Jones, D. R.; Pickering, A., Renormalisation invariance and the soft \(β\)-functions, Physics Letters B, 426, 1-2, 73-77 (1998) · Zbl 1049.81565 · doi:10.1016/s0370-2693(98)00270-6
[245] Jack, I.; Jones, D. R., Renormalisation of the fayet-iliopoulos \(D\)-term, Physics Letters B, 473, 1-2, 102-108 (2000) · Zbl 0959.81021 · doi:10.1016/s0370-2693(99)01484-7
[246] Jack, I.; Jones, D.; Parsons, S., Fayet-Iliopoulos \(D\) term and its renormalization in softly broken supersymmetric theories, Physical Review D, 62 (2000) · doi:10.1103/physrevd.62.125022
[247] Jack, I.; Jones, D. R. T., The gaugino \(β\)-function, Physics Letters B, 415, 4, 383-389 (1997) · doi:10.1016/S0370-2693(97)01277-X
[248] Fonseca, R. M.; Malinsky, M.; Porod, W.; Staub, F., Running soft parameters in SUSY models with multiple U(1) gauge factors, Nuclear Physics B, 854, 1, 28-53 (2012) · Zbl 1229.81181 · doi:10.1016/j.nuclphysb.2011.08.017
[249] Sperling, M.; Stckinger, D.; Voigt, A., Renormalization of vacuum expectation values in spontaneously broken gauge theories, Journal of High Energy Physics, 2013, 7, article 132 (2013) · Zbl 1342.81201 · doi:10.1007/JHEP07(2013)132
[250] Sperling, M.; Stckinger, D.; Voigt, A., Renormalization of vacuum expectation values in spontaneously broken gauge theories: two-loop results, Journal of High Energy Physics, 2014, 1, article 068 (2014) · doi:10.1007/JHEP01(2014)068
[251] Machacek, M. E.; Vaughn, M. T., Two-loop renormalization group equations in a general quantum field theory: (I). Wave function renormalization, Nuclear Physics B, 222, 1, 83-103 (1983) · doi:10.1016/0550-3213(83)90610-7
[252] Machacek, M. E.; Vaughn, M. T., Two-loop renormalization group equations in a general quantum field theory (II). Yukawa couplings, Nuclear Physics B, 236, 1, 221-232 (1984) · doi:10.1016/0550-3213(84)90533-9
[253] Machacek, M. E.; Vaughn, M. T., Two-loop renormalization group equations in a general quantum field theory: (III). Scalar quartic couplings, Nuclear Physics B, 249, 1, 70-92 (1985) · doi:10.1016/0550-3213(85)90040-9
[254] Luo, M.-X.; Wang, H.-W.; Xiao, Y., Two-loop renormalization group equations in general gauge field theories, Physical Review D, 67, 6 (2003) · doi:10.1103/PhysRevD.67.065019
[255] Fonseca, R. M.; Malinsky, M.; Staub, F., Renormalization group equations and matching in a general quantum field theory with kinetic mixing, Physics Letters B, 726, 4-5, 882-886 (2013) · Zbl 1331.81215 · doi:10.1016/j.physletb.2013.09.042
[256] Pierce, D. M.; Bagger, J. A.; Matchev, K. T.; Zhang, R.-J., Precision corrections in the minimal supersymmetric standard model, Nuclear Physics B, 491, 1-2, 3-67 (1997) · doi:10.1016/s0550-3213(96)00683-9
[257] Martin, S. P., Complete two-loop effective potential approximation to the lightest Higgs scalar boson mass in supersymmetry, Physical Review D, 67, 9 (2003) · doi:10.1103/physrevd.67.095012
[258] Martin, S. P., Two-loop scalar self-energies and pole masses in a general renormalizable theory with massless gauge bosons, Physical Review D, 71 (2005) · doi:10.1103/physrevd.71.116004
[259] Brignole, A.; Degrassi, G.; Slavich, P.; Zwirner, F., On the \(O(\alpha_t^2)\) two-loop corrections to the neutral Higgs boson masses in the MSSM, Nuclear Physics B, 631, 1-2, 195-218 (2002) · doi:10.1016/s0550-3213(02)00184-0
[260] Degrassi, G.; Slavich, P.; Zwirner, F., On the neutral Higgs boson masses in the MSSM for arbitrary stop mixing, Nuclear Physics B, 611, 1-3, 403-422 (2001) · doi:10.1016/s0550-3213(01)00343-1
[261] Brignole, A.; Degrassi, G.; Slavich, P.; Zwirner, F., On the two-loop sbottom corrections to the neutral Higgs boson masses in the MSSM, Nuclear Physics B, 643, 1-3, 79-92 (2002) · doi:10.1016/s0550-3213(02)00748-4
[262] Dedes, A.; Slavich, P., Two-loop corrections to radiative electroweak symmetry breaking in the MSSM, Nuclear Physics B, 657, 333-354 (2003) · doi:10.1016/s0550-3213(03)00173-1
[263] Dedes, A.; Degrassi, G.; Slavich, P., On the two-loop Yukawa corrections to the MSSM Higgs boson masses at large tan \(β\), Nuclear Physics B, 672, 1-2, 144-162 (2003) · doi:10.1016/j.nuclphysb.2003.08.033
[264] Degrassi, G.; Slavich, P., On the radiative corrections to the neutral Higgs boson masses in the NMSSM, Nuclear Physics B, 825, 1-2, 119-150 (2010) · Zbl 1196.81257 · doi:10.1016/j.nuclphysb.2009.09.018
[265] Avdeev, L.; Kalmykov, M. Y., Pole masses of quarks in-dimensional reduction, Nuclear Physics B, 502, 1-2, 419-435 (1997) · doi:10.1016/s0550-3213(97)00404-5
[266] Bednyakov, A.; Onishchenko, A.; Velizhanin, V., Two-loop script O sign \((\alpha_s^2)\) MSSM corrections to the pole masses of heavy quarks, European Physical Journal C, 29, 1, 87-101 (2003) · doi:10.1140/epjc/s2003-01178-4
[267] Spira, M.; Djouadi, A.; Graudenz, D.; Zerwas, P., Higgs boson production at the LHC, Nuclear Physics B, 453, 1-2, 17-82 (1995) · doi:10.1016/0550-3213(95)00379-7
[268] Dreiner, H.; Nickel, K.; Porod, W.; Staub, F., Full 1-loop calculation of \(\text{BR} \left(B_{s, d}^0 \to l \overset{-}{l}\right)\) in models beyond the MSSM with SARAH and SPheno, Computer Physics Communications, 184, 11, 2604-2617 (2013) · doi:10.1016/j.cpc.2013.06.021
[269] Ellis, J.; Enqvist, K.; Nanopoulos, D. V.; Zwirner, F., Aspects of the super-unification of strong, electroweak and gravitational interactions, Nuclear Physics, Section B, 276, 1, 14-70 (1986) · doi:10.1016/0550-3213(86)90015-5
[270] Barbieri, R.; Giudice, G., Upper bounds on supersymmetric particle masses, Nuclear Physics B, 306, 1, 63-76 (1988) · doi:10.1016/0550-3213(88)90171-x
[271] Ghilencea, D.; Ross, G., The fine-tuning cost of the likelihood in SUSY models, Nuclear Physics B, 868, 1, 65-74 (2013) · Zbl 1262.81234 · doi:10.1016/j.nuclphysb.2012.11.007
[272] Khalil, S.; Masiero, A., Radiative B−L symmetry breaking in supersymmetric models, Physics Letters B, 665, 5, 374-377 (2008) · doi:10.1016/j.physletb.2008.06.063
[273] Barger, V.; Fileviez Perez, P.; Spinner, S., Minimal gauged \(U(1)_{B - L}\) model with spontaneous \(R\) parity violation, Physical Review Letters, 102 (2009) · doi:10.1103/physrevlett.102.181802
[274] Fileviez Perez, P.; Spinner, S., Fate of \(R\) parity, Physical Review D, 83 (2011) · doi:10.1103/physrevd.83.035004
[275] Camargo-Molina, J.; O’Leary, B.; Porod, W.; Staub, F., Stability of \(R\) parity in supersymmetric models extended by \(U(1)_{B - L}\), Physical Review D, 88, 1 (2013) · doi:10.1103/PhysRevD.88.015033
[276] Marshall, Z.; Ovrut, B. A.; Purves, A.; Spinner, S., Spontaneous \(R\)-parity breaking, stop LSP decays and the neutrino mass hierarchy, Physics Letters B, 732, 325-329 (2014) · doi:10.1016/j.physletb.2014.03.052
[277] Elsayed, A.; Khalil, S.; Moretti, S.; Moursy, A., Right-handed sneutrino-antisneutrino oscillations in a TeV scale supersymmetric B−L model, Physical Review D, 87, 5 (2013) · doi:10.1103/PhysRevD.87.053010
[278] Basso, L.; O’Leary, B.; Porod, W.; Staub, F., Higher order contributions to the effective action of \(N = 2\) super Yang-Mills, Journal of High Energy Physics, 2012, 9, article 054 (2012) · doi:10.1088/1126-6708/2004/09/054
[279] Basso, L.; Staub, F., Enhancing \(h \to \gamma \gamma\) with staus in supersymmetric models with an extended gauge sector, Physical Review D, 87, 1 (2013) · doi:10.1103/PhysRevD.87.015011
[280] Fileviez Perez, P.; Spinner, S.; Trenkel, M. K., Lightest supersymmetric particle stability and new Higgs signals at the LHC, Physical Review D, 84, 9 (2011) · doi:10.1103/PhysRevD.84.095028
[281] Khalil, S.; Moretti, S., Heavy neutrinos, Z′ and Higgs bosons at the LHC: new particles from an old symmetry, Journal of Modern Physics, 4, 1, 7-10 (2013) · doi:10.4236/jmp.2013.41002
[282] Krauss, M. E.; O’Leary, B.; Porod, W.; Staub, F., Implications of gauge kinetic mixing on Z′ and slepton production at the LHC, Physical Review D, 86, 5 (2012) · doi:10.1103/PhysRevD.86.055017
[283] Fileviez Perez, P.; Spinner, S., Supersymmetry at the LHC and the theory of R-parity, Physics Letters B, 728, 489-495 (2014) · doi:10.1016/j.physletb.2013.12.022
[284] Chankowski, P. H.; Pokorski, S.; Wagner, J., Z′ and the Appelquist-Carrazzone decoupling, The European Physical Journal C, 47, 1, 187-205 (2006) · doi:10.1140/epjc/s2006-02537-3
[285] Basso, L.; Moretti, S.; Pruna, G. M., Renormalization group equation study of the scalar sector of the minimal \(B - L\) extension of the standard model, Physical Review D, 82, 5 (2010) · doi:10.1103/physrevd.82.055018
[286] Staub, F.; Ohl, T.; Porod, W.; Speckner, C., A tool box for implementing supersymmetric models, Computer Physics Communications, 183, 10, 2165-2206 (2012) · doi:10.1016/j.cpc.2012.04.013
[287] Dev, P. B.; Mohapatra, R., TeV scale inverse seesaw model in SO(10) and leptonic nonunitarity effects, Physical Review D, 81, 1 (2010) · doi:10.1103/PhysRevD.81.013001
[288] Bhupal Dev, P.; Mohapatra, R., Electroweak symmetry breaking and proton decay in SO(10) supersymmetric GUT with TeV \(W_R\), Physical Review D, 82 (2010) · doi:10.1103/physrevd.82.035014
[289] Brooijmans, G.; Gripaios, B.; Moortgat, F., Les Houches 2011: physics at TeV colliders new physics working group report
[290] Basso, L.; Belyaev, A.; Chowdhury, D.; Hirsch, M.; Khalil, S.; Moretti, S.; O’Leary, B.; Porod, W.; Staub, F., Proposal for generalised supersymmetry les Houches Accord for see-saw models and PDG numbering scheme, Computer Physics Communications, 184, 3, 698-719 (2013) · Zbl 1302.81007 · doi:10.1016/j.cpc.2012.11.004
[291] Ohl, T., SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at \(e^+ e^-\) colliders, Computer Physics Communications, 153, 275-315 (1997) · doi:10.1016/S0010-4655(03)00222-4
[292] Skands, P. Z.; Allanach, B.; Baer, H.; Balazs, C.; Belanger, G.; Boudjema, F.; Djouadi, A.; Godbole, R., SUSY Les Houches accord: interfacing SUSY spectrum calculators, decay packages, and event generators, Journal of High Energy Physics, 2004, 7, article 036 (2004) · doi:10.1088/1126-6708/2004/07/036
[293] Allanach, B.; Balazs, C.; Belanger, G., SUSY Les Houches Accord 2, Computer Physics Communications, 180, 1, 8-25 (2009) · doi:10.1016/j.cpc.2008.08.004
[294] Adam, J.; Bai, X.; Baldini, A. M., New constraint on the existence of the \(\mu^+ \to e^+ \gamma\) decay, Physical Review Letters, 110 (2013) · doi:10.1103/physrevlett.110.201801
[295] Aubert, B.; Karyotakis, Y.; Lees, J. P., Searches for Lepton flavor violation in the decays \(\tau^\pm \to e^\pm \gamma\) and \(\tau^\pm \to \mu^\pm \gamma \), Physical Review Letters, 104, 2 (2010) · doi:10.1103/PhysRevLett.104.021802
[296] Bellgardt, U.; Otter, G.; Eichler, R., Search for the decay \(\mu^+ \to e^+ e^+ e^-\), Nuclear Physics B, 299, 1, 1-6 (1988) · doi:10.1016/0550-3213(88)90462-2
[297] Hayasaka, K.; Inami, K.; Miyazaki, Y., Search for lepton-flavor-violating \(\tau\) decays into three leptons with 719 million produced \(\tau^+ \tau^-\) pairs, Physics Letters B, 687, 2-3, 139-143 (2010) · doi:10.1016/j.physletb.2010.03.037
[298] Dohmen, C.; Groth, K.-D.; Heer, B., Test of lepton-flavour conservation in \(\mu \to e\) conversion on titanium, Physics Letters B, 317, 4, 631-636 (1993) · doi:10.1016/0370-2693(93)91383-x
[299] Bertl, W. H., A search for \(μ\)-e conversion in muonic gold, The European Physical Journal C, 47, 2, 337-346 (2006) · doi:10.1140/epjc/s2006-02582-x
[300] Liu, J. J.; Li, C. S.; Yang, L. L.; Jin, L. G., \( \text{t} \to \text{cV}\) via SUSY FCNC couplings in the unconstrained MSSM, Physics Letters B, 599, 1-2, 92-101 (2004) · doi:10.1016/j.physletb.2004.07.062
[301] Aguilar-Saavedra, J.; Nobre, B., Rare top decays \(t \to c \gamma, t \to c g\) and CKM unitarity, Physics Letters B, 553, 3-4, 251-260 (2003) · doi:10.1016/S0370-2693(02)03230-6
[302] Abe, F.; Akimoto, H.; Akopian, A., Search for flavor-changing neutral current decays of the top quark in \(p \overset{-}{p}\) collisions at \(\sqrt{s} = 1.8\) TeV, Physical Review Letters, 80, 2525-2530 (1998) · doi:10.1103/physrevlett.80.2525
[303] Nilles, H. P.; Srednicki, M.; Wyler, D., Weak interaction breakdown induced by supergravity, Physics Letters B, 120, 4-6, 346-348 (1983) · doi:10.1016/0370-2693(83)90460-4
[304] Derendinger, J.; Savoy, C. A., Quantum effects and SU(2)×U(1) breaking in supergravity gauge theories, Nuclear Physics B, 237, 2, 307-328 (1984) · doi:10.1016/0550-3213(84)90162-7
[305] Claudson, M.; Hall, L. J.; Hinchliffe, I., Low-energy supergravity: false vacua and vacuous predictions, Nuclear Physics B, 228, 3, 501-528 (1983) · doi:10.1016/0550-3213(83)90556-4
[306] Kounnas, C.; Lahanas, A.; Nanopoulos, D. V.; Quiros, M., Low-energy behaviour of realistic locally-supersymmetric grand unified theories, Nuclear Physics B, 236, 2, 438-466 (1984) · doi:10.1016/0550-3213(84)90545-5
[307] Drees, M.; Gluck, M.; Grassie, K., A new class of false vacua in low energy \(N = 1\) supergravity theories, Physics Letters B, 157, 2-3, 164-168 (1985) · doi:10.1016/0370-2693(85)91538-2
[308] Gunion, J.; Haber, H.; Sher, M., Charge/color breaking minima and \(A\)-parameter bounds in supersymmetric models, Nuclear Physics B, 306, 1, 1-13 (1988) · doi:10.1016/0550-3213(88)90168-x
[309] Komatsu, H., New constraints on parameters in the minimal supersymmetric model, Physics Letters B, 215, 2, 323-327 (1988) · doi:10.1016/0370-2693(88)91441-4
[310] Langacker, P.; Polonsky, N., Implications of Yukawa unification for the Higgs sector in supersymmetric grand-unified models, Physical Review D, 50, 3, 2199-2217 (1994) · doi:10.1103/physrevd.50.2199
[311] Casas, J.; Lleyda, A.; Munoz, C., Strong constraints on the parameter space of the MSSM from charge and color breaking minima, Nuclear Physics B, 471, 1-2, 3-58 (1996) · doi:10.1016/0550-3213(96)00194-0
[312] Casas, J.; Dimopoulos, S., Stability bounds on flavor-violating trilinear soft terms in the MSSM, Physics Letters B, 387, 1, 107-112 (1996) · doi:10.1016/0370-2693(96)01000-3
[313] Camargo-Molina, J. E.; O’Leary, B.; Porod, W.; Staub, F., Vevacious: a tool for finding the global minima of one-loop effective potentials with many scalars, European Physical Journal C, 73, 10, 1-22 (2013) · doi:10.1140/epjc/s10052-013-2588-2
[314] Lee, T. L.; Li, T. Y.; Tsai, C. H., HOM4PS-2.0: a software package for solving polynomial systems by the polyhedral homotopy continuation method, Computing. Archives for Scientific Computing, 83, 2-3, 109-133 (2008) · Zbl 1167.65366 · doi:10.1007/s00607-008-0015-6
[315] James, F.; Roos, M., Minuit—a system for function minimization and analysis of the parameter errors and correlations, Computer Physics Communications, 10, 6, 343-367 (1975) · doi:10.1016/0010-4655(75)90039-9
[316] Wainwright, C. L., CosmoTransitions: computing cosmological phase transition temperatures and bubble profiles with multiple fields, Computer Physics Communications, 183, 9, 2006-2013 (2012) · doi:10.1016/j.cpc.2012.04.004
[317] Bélanger, G.; Christensen, N. D.; Pukhov, A.; Semenov, A., SLHAplus: a library for implementing extensions of the standard model, Computer Physics Communications, 182, 3, 763-774 (2011) · Zbl 1214.81322 · doi:10.1016/j.cpc.2010.10.025
[318] Ade, P. P.; Aghanim, N.; Armitage-Caplan, C., Planck 2013 results. XVI. Cosmological parameters, Astronomy & Astrophysics, 571, article A16 (2014) · doi:10.1051/0004-6361/201321591
[319] Conte, E.; Fuks, B.; Serret, G., MadAnalysis 5, a user-friendly framework for collider phenomenology, Computer Physics Communications, 184, 1, 222-256 (2013) · doi:10.1016/j.cpc.2012.09.009
[320] Craig, N., The state of supersymmetry after run I of the LHC
[321] Braam, F.; Reuter, J., A simplified scheme for GUT-inspired theories with multiple Abelian factors, The European Physical Journal C, 72, article 1885 (2012) · doi:10.1140/epjc/s10052-012-1885-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.