×

The Hilbert space costratification for the orbit type strata of \(\mathrm{SU}(2)\)-lattice gauge theory. (English) Zbl 1398.81157

Different from perturbation theory approaches, in lattice gauge theories the full theory (like for instance QCD) is becoming implemented on a lattice. By doing so, theorists hope to observe effects which are out of the reach of perturbative approaches. Taking the gauge group \(\mathrm{SU}(2)\) as an example, the authors deal with mathematical aspects of this implementation. \(\mathrm{SU}(2)\) is the Lie group of the theory of angular momentum. For single particles, the combination of two angular momenta is conducted by the Clebsch-Gordan coefficients. On the lattice, the combination of angular momenta needs an iterative approach. Two angular momenta are combined to an intermediate momentum which can again be combined with the next angular momentum. This iteration, symbolically expressed in terms of binary trees, leads to an iterative construction of the costratifiaction of the quantum Hilbert space according to Huebschmann. In the following, the authors show how two such trees can assembled to a combined tree for the lattice. For a practicioner like the referee, the publication is difficult to understand, and it takes a long time before the essence is found. However, for readers with the necessary mathematical background the authors present a lot of details for a rigorous treatment of the subject.

MSC:

81T13 Yang-Mills and other gauge theories in quantum field theory
81T25 Quantum field theory on lattices
57N80 Stratifications in topological manifolds
51A10 Homomorphism, automorphism and dualities in linear incidence geometry
20E36 Automorphisms of infinite groups
22E70 Applications of Lie groups to the sciences; explicit representations

Citations:

Zbl 1368.81123

Software:

Mathematica; SymPy

References:

[1] Abraham, R.; Marsden, J. E., Foundations of Mechanics, (1978), Benjamin/Cummings · Zbl 0393.70001
[2] Anderson, R. W.; Aquilanti, V.; Marzuoli, A., 3n − j morphogenesis and semiclassical disentangling, J. Phys. Chem. A, 113, 15106-15117, (2009) · doi:10.1021/jp905212a
[3] Baez, J. C., Spin networks in Gauge theory, Adv. Math., 117, 253-272, (1996) · Zbl 0843.58012 · doi:10.1006/aima.1996.0012
[4] Biedenharn, L. C.; Louck, J. D., Angular momentum and quantum physics: Theory and applications, Encyclopedia of Mathematics and Its Applications, (1981) · Zbl 0474.00023
[5] Biedenharn, L. C.; Louck, J. D., The Racah-Wigner algebra in quantum theory, Encyclopedia of Mathematics and Its Applications, (1981) · Zbl 0474.00024
[6] Charzyński, S.; Kijowski, J.; Rudolph, G.; Schmidt, M., On the stratified classical configuration space of lattice QCD, J. Geom. Phys., 55, 137-178, (2005) · Zbl 1107.81049 · doi:10.1016/j.geomphys.2004.12.002
[7] Charzyński, S.; Rudolph, G.; Schmidt, M., On the topological structure of the stratified classical configuration space of lattice QCD, J. Geom. Phys., 58, 1607-1623, (2008) · Zbl 1148.70009 · doi:10.1016/j.geomphys.2008.07.005
[8] Fegan, H. D., The spectrum of the Laplacian on forms over a Lie group, Pac. J. Math., 90, 2, 373-387, (1980) · Zbl 0461.58014 · doi:10.2140/pjm.1980.90.373
[9] Fischer, E.; Rudolph, G.; Schmidt, M., A lattice gauge model of singular Marsden-Weinstein reduction. Part I. Kinematics, J. Geom. Phys., 57, 1193-1213, (2007) · Zbl 1114.37030 · doi:10.1016/j.geomphys.2006.09.008
[10] Fuchs, E., Costratification in terms of coherent states, Rep. Math. Phys., 79, 135-149, (2017) · Zbl 1384.81052 · doi:10.1016/s0034-4877(17)30028-9
[11] Fürstenberg, F.; Rudolph, G.; Schmidt, M., Defining relations for the orbit type strata of SU(2)-lattice gauge models, J. Geom. Phys., 119, 66-81, (2017) · Zbl 1368.81123 · doi:10.1016/j.geomphys.2017.04.010
[12] Goodman, R.; Wallach, N. R., Representations and Invariants of the Classical Groups, (1998), Cambridge University Press · Zbl 0901.22001
[13] Grundling, H.; Rudolph, G., QCD on an infinite lattice, Commun. Math. Phys., 318, 717-766, (2013) · Zbl 1271.81177 · doi:10.1007/s00220-013-1674-5
[14] Grundling, H.; Rudolph, G., Dynamics for QCD on an infinite lattice, Commun. Math. Phys., 349, 1163-1202, (2017) · Zbl 1358.81157 · doi:10.1007/s00220-016-2733-5
[15] Hall, B. C., The Segal-Bargmann ‘coherent state’ transform for compact Lie groups, J. Funct. Anal., 122, 103-151, (1994) · Zbl 0838.22004 · doi:10.1006/jfan.1994.1064
[16] Hall, B. C., Geometric quantization and the generalized Segal-Bargmann transform for Lie groups of compact type, Commun. Math. Phys., 226, 233-268, (2002) · Zbl 1007.53070 · doi:10.1007/s002200200607
[17] Heinzner, P.; Loose, F., Reduction of complex Hamiltonian G-spaces, Geom. Funct. Anal., 4, 288-297, (1994) · Zbl 0816.53018 · doi:10.1007/bf01896243
[18] Helgason, S., Groups and Geometric Analysis, (1984), Academic Press · Zbl 0543.58001
[19] Hofmann, M.; Rudolph, G.; Schmidt, M., Orbit type stratification of the adjoint quotient of a compact semisimple Lie group, J. Math. Phys., 54, 083505, (2013) · Zbl 1286.81143 · doi:10.1063/1.4817066
[20] Huebschmann, J., Kähler quantization and reduction, J. Reine Angew. Math., 591, 75-109, (2006) · Zbl 1090.53067 · doi:10.1515/crelle.2006.015
[21] Huebschmann, J., Kirillov’s character formula, the holomorphic Peter-Weyl theorem, and the Blattner-Kostant-Sternberg pairing, J. Geom. Phys., 58, 833-848, (2008) · Zbl 1168.22011 · doi:10.1016/j.geomphys.2008.02.004
[22] Huebschmann, J.; Rudolph, G.; Schmidt, M., A lattice gauge model for quantum mechanics on a stratified space, Commun. Math. Phys., 286, 459-494, (2009) · Zbl 1170.81038 · doi:10.1007/s00220-008-0693-0
[23] Jarvis, P. D.; Kijowski, J.; Rudolph, G., On the structure of the observable algebra of QCD on the lattice, J. Phys. A: Math. Gen., 38, 5359-5377, (2005) · Zbl 1071.81101 · doi:10.1088/0305-4470/38/23/020
[24] Kempf, G.; Ness, L., The length of vectors in representation spaces, Algebraic Geometry, 233-244, (1979), Springer
[25] Kijowski, J.; Rudolph, G., On the Gauss law and global charge for quantum chromodynamics, J. Math. Phys., 43, 1796-1808, (2002) · Zbl 1059.81177 · doi:10.1063/1.1447310
[26] Kijowski, J.; Rudolph, G., Charge superselection sectors for QCD on the lattice, J. Math. Phys., 46, 032303, (2005) · Zbl 1076.81036 · doi:10.1063/1.1851604
[27] Kogut, J.; Susskind, L., Hamiltonian formulation of Wilson’s lattice gauge theories, Phys. Rev. D, 11, 395-408, (1975) · doi:10.1103/physrevd.11.395
[28] Louck, J. D., Unitary Symmetry and Combinatorics, (2008), World Scientific Publishing · Zbl 1190.51002
[29] Meurer, A., SymPy: Symbolic computing in Python, PeerJ Comput. Sci., 3, e103, (2017) · doi:10.7717/peerj-cs.103
[30] Mumford, D.; Fogarty, J.; Kirwan, F., Geometric Invariant Theory, (1994), Springer · Zbl 0797.14004
[31] Naimark, M. A.; Stern, I. A., Theory of Group Representations, (1982), Springer · Zbl 0484.22018
[32] Ortega, J.-P.; Ratiu, T. S., Momentum maps and Hamiltonian reduction, Progress in Mathematics, (2004), Birkhäuser · Zbl 1241.53069
[33] Procesi, C., Lie Groups. Universitext, (2007), Springer · Zbl 1154.22001
[34] Rudolph, G.; Schmidt, M., On the algebra of quantum observables for a certain gauge model, J. Math. Phys., 50, 052102, (2009) · Zbl 1187.81178 · doi:10.1063/1.3125184
[35] Rudolph, G.; Schmidt, M., Differential Geometry and Mathematical Physics. Part I. Manifolds, Lie Groups and Hamiltonian Systems, (2013), Springer · Zbl 1259.53003
[36] Sjamaar, R.; Lerman, E., Stratified symplectic spaces and reduction, Ann. Math., 134, 375-422, (1991) · Zbl 0759.58019 · doi:10.2307/2944350
[37] Stedman, G. E., Diagram Techniques in Group Theory, (2009), Cambridge University Press
[38] Stone, A., Wigner coefficient calculator, .
[39] Thiemann, Th., Modern Canonical Quantum General Relativity, (2007), Cambridge Monographs on Mathematical Physics · Zbl 1129.83004
[40] Wolfram Research, Inc., Mathematica. Version 11.3, Champaign, IL, 2018.
[41] Yutsis, A. P.; Bandzaitis, I. B.; Vanagas, V. V., The Mathematical Apparatus of the Theory of Angular Momentum, (1962), Israel Program for Sci. Transl. Ltd: Israel Program for Sci. Transl. Ltd, Jerusalem · Zbl 0111.42704
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.