×

Dispersion relations in non-relativistic two-dimensional materials from quasinormal modes in Hǒrava gravity. (English) Zbl 1427.83065

Summary: We compute dispersion relations of non-hydrodynamic and hydrodynamic modes in a non-relativistic strongly coupled two-dimensional quantum field theory. This is achieved by numerically computing quasinormal modes (QNMs) of a particular analytically known black brane solution to 3+1-dimensional Hǒrava gravity. Hǒrava gravity is distinguished from Einstein gravity by the presence of a scalar field, termed the khronon, defining a preferred time-foliation. Surprisingly, for this black brane solution, the khronon fluctuation numerically decouples from all others, having its own set of purely imaginary eigenfrequencies, for which we provide an analytic expression. All other Hǒrava gravity QNMs are expressed analytically in terms of QNMs of Einstein gravity, in units involving the khronon coupling constants and various horizons. Our numerical computation reproduces the analytically known momentum diffusion mode, and extends the analytic expression for the sound modes to a wide range of khronon coupling values. In the eikonal limit (large momentum limit), the analytically known dispersion of QNM frequencies with the momentum is reproduced by our numerics. We provide a parametrization of all QNM frequencies to fourth order in the momentum. We demonstrate perturbative stability in a wide range of coupling constants and momenta.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83E05 Geometrodynamics and the holographic principle
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81U30 Dispersion theory, dispersion relations arising in quantum theory
83C57 Black holes

References:

[1] Maldacena, JM, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys., 38, 1113 (1999) · Zbl 0969.81047
[2] Astefanesei, D.; Myers, RC, A New wrinkle on the enhancon, JHEP, 02, 043 (2002) · doi:10.1088/1126-6708/2002/02/043
[3] Policastro, G.; Son, DT; Starinets, AO, The Shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett., 87, 081601 (2001) · doi:10.1103/PhysRevLett.87.081601
[4] Bhattacharyya, S.; Hubeny, VE; Minwalla, S.; Rangamani, M., Nonlinear Fluid Dynamics from Gravity, JHEP, 02, 045 (2008) · doi:10.1088/1126-6708/2008/02/045
[5] P. Hǒrava, Quantum Gravity at a Lifshitz Point, Phys. Rev.D 79 (2009) 084008 [arXiv:0901.3775] [INSPIRE]. · Zbl 1225.83033
[6] Hořava, Petr; Melby-Thompson, Charles M., Anisotropic conformal infinity, General Relativity and Gravitation, 43, 1391-1400 (2010) · Zbl 1215.83018 · doi:10.1007/s10714-010-1117-y
[7] C. Anderson, S.J. Carlip, J.H. Cooperman, P. Hǒrava, R.K. Kommu and P.R. Zulkowski, Quantizing Hǒrava-Lifshitz Gravity via Causal Dynamical Triangulations, Phys. Rev.D 85 (2012) 044027 [arXiv:1111.6634] [INSPIRE].
[8] Germani, C.; Kehagias, A.; Sfetsos, K., Relativistic Quantum Gravity at a Lifshitz Point, JHEP, 09, 060 (2009) · doi:10.1088/1126-6708/2009/09/060
[9] Janiszewski, S.; Karch, A., String Theory Embeddings of Nonrelativistic Field Theories and Their Holographic Hǒrava Gravity Duals, Phys. Rev. Lett., 110, 081601 (2013) · doi:10.1103/PhysRevLett.110.081601
[10] Janiszewski, S.; Karch, A., Non-relativistic holography from Hǒrava gravity, JHEP, 02, 123 (2013) · doi:10.1007/JHEP02(2013)123
[11] Janiszewski, S., Asymptotically hyperbolic black holes in Hǒrava gravity, JHEP, 01, 018 (2015) · Zbl 1388.83469 · doi:10.1007/JHEP01(2015)018
[12] Davison, RA; Grozdanov, S.; Janiszewski, S.; Kaminski, M., Momentum and charge transport in non-relativistic holographic fluids from Hǒrava gravity, JHEP, 11, 170 (2016) · Zbl 1390.83155 · doi:10.1007/JHEP11(2016)170
[13] Sybesma, W.; Vandoren, S., Lifshitz quasinormal modes and relaxation from holography, JHEP, 05, 021 (2015) · Zbl 1388.83323 · doi:10.1007/JHEP05(2015)021
[14] U. Gürsoy, A. Jansen, W. Sybesma and S. Vandoren, Holographic Equilibration of Nonrelativistic Plasmas, Phys. Rev. Lett.117 (2016) 051601 [arXiv:1602.01375] [INSPIRE].
[15] Janiszewski, S.; Kaminski, M., Quasinormal modes of magnetic and electric black branes versus far from equilibrium anisotropic fluids, Phys. Rev., D 93, 025006 (2016)
[16] J. Bhattacharyya, Aspects of holography in Lorentz-violating gravity, Ph.D. Thesis, University of New Hampshire (2013).
[17] T. Jacobson and D. Mattingly, Gravity with a dynamical preferred frame, Phys. Rev.D 64 (2001) 024028 [gr-qc/0007031] [INSPIRE]. · Zbl 1104.83307
[18] Festuccia, G.; Liu, H., A Bohr-Sommerfeld quantization formula for quasinormal frequencies of AdS black holes, Adv. Sci. Lett., 2, 221 (2009) · doi:10.1166/asl.2009.1029
[19] Morgan, J.; Cardoso, V.; Miranda, AS; Molina, C.; Zanchin, VT, Quasinormal modes of black holes in anti-de Sitter space: A Numerical study of the eikonal limit, Phys. Rev., D 80, 024024 (2009)
[20] Fuini, JF; Uhlemann, CF; Yaffe, LG, Damping of hard excitations in strongly coupled N = 4 plasma, JHEP, 12, 042 (2016) · Zbl 1390.83159 · doi:10.1007/JHEP12(2016)042
[21] T. Griffin, P. Hǒrava and C.M. Melby-Thompson, Lifshitz Gravity for Lifshitz Holography, Phys. Rev. Lett.110 (2013) 081602 [arXiv:1211.4872] [INSPIRE]. · Zbl 1348.83074
[22] Hartnoll, SA; Kovtun, PK; Muller, M.; Sachdev, S., Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev., B 76, 144502 (2007) · doi:10.1103/PhysRevB.76.144502
[23] Blauvelt, E.; Cremonini, S.; Hoover, A.; Li, L.; Waskie, S., Holographic model for the anomalous scalings of the cuprates, Phys. Rev., D 97, 061901 (2018)
[24] Hartnoll, SA, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav., 26, 224002 (2009) · Zbl 1181.83003 · doi:10.1088/0264-9381/26/22/224002
[25] McGreevy, J., Holographic duality with a view toward many-body physics, Adv. High Energy Phys., 2010, 723105 (2010) · Zbl 1216.81118 · doi:10.1155/2010/723105
[26] Kaminski, M.; Landsteiner, K.; Pena-Benitez, F.; Erdmenger, J.; Greubel, C.; Kerner, P., Quasinormal modes of massive charged flavor branes, JHEP, 03, 117 (2010) · Zbl 1271.81140 · doi:10.1007/JHEP03(2010)117
[27] Barausse, E.; Jacobson, T.; Sotiriou, TP, Black holes in Einstein-aether and Hǒrava-Lifshitz gravity, Phys. Rev., D 83, 124043 (2011)
[28] Miranda, AS; Morgan, J.; Zanchin, VT, Quasinormal modes of plane-symmetric black holes according to the AdS/CFT correspondence, JHEP, 11, 030 (2008) · doi:10.1088/1126-6708/2008/11/030
[29] Kovtun, PK; Starinets, AO, Quasinormal modes and holography, Phys. Rev., D 72, 086009 (2005)
[30] I. Wolfram Research, Mathematica, Wolfram Research, Inc., Version 10.4.1.0 (2016).
[31] J. Chakrabarty, Applied Plasticity, Second Edition, Springer (2010). · Zbl 1180.74002
[32] Jansen, A., Overdamped modes in Schwarzschild-de Sitter and a Mathematica package for the numerical computation of quasinormal modes, Eur. Phys. J. Plus, 132, 546 (2017) · doi:10.1140/epjp/i2017-11825-9
[33] T. Jacobson and D. Mattingly, Einstein-Aether waves, Phys. Rev.D 70 (2004) 024003 [gr-qc/0402005] [INSPIRE]. · Zbl 1176.83014
[34] Morgan, J.; Cardoso, V.; Miranda, AS; Molina, C.; Zanchin, VT, Gravitational quasinormal modes of AdS black branes in d spacetime dimensions, JHEP, 09, 117 (2009) · doi:10.1088/1126-6708/2009/09/117
[35] Herzog, CP, The Sound of M-theory, Phys. Rev., D 68, 024013 (2003)
[36] Boer, J.; Hartong, J.; Obers, NA; Sybesma, W.; Vandoren, S., Hydrodynamic Modes of Homogeneous and Isotropic Fluids, SciPost Phys., 5, 014 (2018) · doi:10.21468/SciPostPhys.5.2.014
[37] Kodama, H.; Ishibashi, A.; Seto, O., Brane world cosmology: Gauge invariant formalism for perturbation, Phys. Rev., D 62, 064022 (2000)
[38] Starinets, AO, Quasinormal modes of near extremal black branes, Phys. Rev., D 66, 124013 (2002)
[39] Jensen, K.; Kaminski, M.; Kovtun, P.; Meyer, R.; Ritz, A.; Yarom, A., Parity-Violating Hydrodynamics in 2+1 Dimensions, JHEP, 05, 102 (2012) · doi:10.1007/JHEP05(2012)102
[40] Kaminski, M.; Moroz, S., Nonrelativistic parity-violating hydrodynamics in two spatial dimensions, Phys. Rev., B 89, 115418 (2014) · doi:10.1103/PhysRevB.89.115418
[41] Jensen, K.; Karch, A., Revisiting non-relativistic limits, JHEP, 04, 155 (2015) · Zbl 1388.83355 · doi:10.1007/JHEP04(2015)155
[42] D.T. Son, Newton-Cartan Geometry and the Quantum Hall Effect, arXiv:1306.0638 [INSPIRE].
[43] Jensen, K., On the coupling of Galilean-invariant field theories to curved spacetime, Sci Post Phys., 5, 011 (2018) · doi:10.21468/SciPostPhys.5.1.011
[44] Jensen, K., Aspects of hot Galilean field theory, JHEP, 04, 123 (2015) · Zbl 1388.83354 · doi:10.1007/JHEP04(2015)123
[45] Hartong, J.; Obers, NA, Hǒrava-Lifshitz gravity from dynamical Newton-Cartan geometry, JHEP, 07, 155 (2015) · Zbl 1388.83586 · doi:10.1007/JHEP07(2015)155
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.