×

DRalgo: a package for effective field theory approach for thermal phase transitions. (English) Zbl 1525.81029

Summary: DRalgo is an algorithmic implementation that constructs an effective, dimensionally reduced, high-temperature field theory for generic models. The corresponding Mathematica package automatically performs the matching to next-to-leading order. This includes two-loop thermal corrections to scalar and Debye masses as well as one-loop thermal corrections to couplings. DRalgo also allows for integrating out additional heavy scalars. Along the way, the package provides leading-order beta functions for general gauge-charges and fermion-families; both in the fundamental and in the effective theory. Finally, the package computes the finite-temperature effective potential within the effective theory. The article explains the theory of the underlying algorithm while introducing the software on a pedagogical level.

MSC:

81T12 Effective quantum field theories
81T33 Dimensional compactification in quantum field theory
80A10 Classical and relativistic thermodynamics
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
55P35 Loop spaces
33B15 Gamma, beta and polygamma functions
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems
81V74 Fermionic systems in quantum theory
81-08 Computational methods for problems pertaining to quantum theory
81-01 Introductory exposition (textbooks, tutorial papers, etc.) pertaining to quantum theory

References:

[1] Canetti, L.; Drewes, M.; Shaposhnikov, M., New J. Phys., 14, Article 095012 pp. (2012) · Zbl 1448.85002
[2] Elor, G., (2022 Snowmass Summer Study, vol. 3 (2022))
[3] Shaposhnikov, M. E., Nucl. Phys. B, 287, 757 (1987)
[4] Shaposhnikov, M. E., JETP Lett., 44, 465 (1986)
[5] Kuzmin, V. A.; Rubakov, V. A.; Shaposhnikov, M. E., Phys. Lett. B, 155, 36 (1985)
[6] Sakharov, A. D., Pis’ma Zh. Eksp. Teor. Fiz., 5, 32 (1967)
[7] Kajantie, K.; Laine, M.; Rummukainen, K.; Shaposhnikov, M. E., Nucl. Phys. B, 466, 189 (1996)
[8] Gürtler, M.; Ilgenfritz, E.-M.; Schiller, A., Phys. Rev. D, 56, 3888 (1997)
[9] Kajantie, K.; Laine, M.; Rummukainen, K.; Shaposhnikov, M. E., Phys. Rev. Lett., 77, 2887 (1996)
[10] Ramsey-Musolf, M. J., J. High Energy Phys., 09, Article 179 pp. (2020)
[11] Friedrich, L. S.; Ramsey-Musolf, M. J.; Tenkanen, T. V.I.; Tran, V. Q., Addressing the gravitational wave - collider inverse problem
[12] Amaro-Seoane, P., Laser interferometer space antenna
[13] Kawamura, S., Class. Quantum Gravity, 23, S125 (2006)
[14] Ruan, W.-H.; Guo, Z.-K.; Cai, R.-G.; Zhang, Y.-Z., Int. J. Mod. Phys. A, 35, Article 2050075 pp. (2020)
[15] Harry, G. M.; Fritschel, P.; Shaddock, D. A.; Folkner, W.; Phinney, E. S., Class. Quantum Gravity, 23, 4887 (2006) · Zbl 1099.83512
[16] de Vries, J.; Postma, M.; van de Vis, J.; White, G., J. High Energy Phys., 01, Article 089 pp. (2018) · Zbl 1384.85007
[17] Dorsch, G. C.; Huber, S. J.; Konstandin, T., J. Cosmol. Astropart. Phys., 12, Article 034 pp. (2018)
[18] Hall, E.; Konstandin, T.; McGehee, R.; Murayama, H.; Servant, G., J. High Energy Phys., 04, Article 042 pp. (2020)
[19] Baldes, I.; Servant, G., J. High Energy Phys., 10, Article 053 pp. (2018)
[20] Chala, M.; Ramos, M.; Spannowsky, M., Eur. Phys. J. C, 79, 156 (2019)
[21] Croon, D.; Gould, O.; Schicho, P.; Tenkanen, T. V.I.; White, G., J. High Energy Phys., 04, Article 055 pp. (2021)
[22] Gould, O., J. High Energy Phys., 04, Article 057 pp. (2021)
[23] Alves, A.; Ghosh, T.; Guo, H.-K.; Sinha, K.; Vagie, D., J. High Energy Phys., 04, Article 052 pp. (2019)
[24] Niemi, L.; Schicho, P.; Tenkanen, T. V.I., Phys. Rev. D, 103, Article 115035 pp. (2021)
[25] Bell, N. F.; Dolan, M. J.; Friedrich, L. S.; Ramsey-Musolf, M. J.; Volkas, R. R., J. High Energy Phys., 21, Article 098 pp. (2020)
[26] Niemi, L.; Ramsey-Musolf, M. J.; Tenkanen, T. V.I.; Weir, D. J., Phys. Rev. Lett., 126, Article 171802 pp. (2021)
[27] Linde, A. D., Phys. Lett. B, 96, 289 (1980)
[28] Braaten, E., Phys. Rev. Lett., 74, 2164 (1995)
[29] Arnold, P. B.; Espinosa, O., Phys. Rev. D, 47, 3546 (1993)
[30] Farakos, K.; Kajantie, K.; Rummukainen, K.; Shaposhnikov, M. E., Nucl. Phys. B, 425, 67 (1994)
[31] Gould, O.; Tenkanen, T. V.I., J. High Energy Phys., 06, Article 069 pp. (2021)
[32] Ginsparg, P. H., Nucl. Phys. B, 170, 388 (1980)
[33] Appelquist, T.; Pisarski, R. D., Phys. Rev. D, 23, 2305 (1981)
[34] Kajantie, K.; Laine, M.; Rummukainen, K.; Shaposhnikov, M. E., Nucl. Phys. B, 458, 90 (1996)
[35] Braaten, E.; Nieto, A., Phys. Rev. D, 51, 6990 (1995)
[36] Kajantie, K.; Karjalainen, M.; Laine, M.; Peisa, J., Nucl. Phys. B, 520, 345 (1998)
[37] Andersen, J. O., Phys. Rev. D, 59, Article 065015 pp. (1999)
[38] Andersen, J. O., Z. Phys. C, 75, 147 (1997)
[39] Farakos, K.; Kajantie, K.; Rummukainen, K.; Shaposhnikov, M. E., Nucl. Phys. B, 442, 317 (1995)
[40] Andersen, J. O.; Gorda, T.; Helset, A., Phys. Rev. Lett., 121, Article 191802 pp. (2018)
[41] Niemi, L.; Patel, H. H.; Ramsey-Musolf, M. J.; Tenkanen, T. V.I.; Weir, D. J., Phys. Rev. D, 100, Article 035002 pp. (2019)
[42] Hirvonen, J., Intuitive method for constructing effective field theories
[43] Rajantie, A., Nucl. Phys. B, 501, 521 (1997)
[44] Andersen, J. O.; Haque, N.; Mustafa, M. G.; Strickland, M., Phys. Rev. D, 93, Article 054045 pp. (2016)
[45] Andersen, J. O.; Braaten, E.; Petitgirard, E.; Strickland, M., Phys. Rev. D, 66, Article 085016 pp. (2002)
[46] Baum, S.; Carena, M.; Shah, N. R.; Wagner, C. E.M.; Wang, Y., J. High Energy Phys., 03, Article 055 pp. (2021)
[47] Ivanov, I. P.; Nishi, C. C., J. High Energy Phys., 01, Article 021 pp. (2015)
[48] Bhupal Dev, P. S.; Mohapatra, R. N.; Rodejohann, W.; Xu, X.-J., J. High Energy Phys., 02, Article 154 pp. (2019)
[49] Appelquist, T.; Dobrescu, B. A.; Hopper, A. R., Phys. Rev. D, 68, Article 035012 pp. (2003)
[50] Schicho, P. M.; Tenkanen, T. V.I.; Österman, J., J. High Energy Phys., 06, Article 130 pp. (2021)
[51] Bodeker, D., Nucl. Phys. B, 559, 502 (1999)
[52] Moore, G. D.; Rummukainen, K.; Tranberg, A., J. High Energy Phys., 04, Article 017 pp. (2001)
[53] Moore, G. D.; Rummukainen, K., Phys. Rev. D, 63, Article 045002 pp. (2001)
[54] Laine, M.; Schröder, Y., Phys. Rev. D, 73, Article 085009 pp. (2006)
[55] Ghiglieri, J.; Kurkela, A.; Strickland, M.; Vuorinen, A., Phys. Rep., 880, 1 (2020) · Zbl 1476.81144
[56] Rajantie, A. K., Nucl. Phys. B, 480, 729 (1996) · Zbl 0925.81119
[57] Möller, J.; Schröder, Y., J. High Energy Phys., 08, Article 025 pp. (2012)
[58] Laine, M.; Schicho, P.; Schröder, Y., J. High Energy Phys., 05, Article 037 pp. (2018)
[59] Overduin, J. M.; Wesson, P. S., Phys. Rep., 283, 303 (1997)
[60] Cohen, T., PoS, TASI2018, Article 011 pp. (2019)
[61] Matsubara, T., Prog. Theor. Phys., 14, 351 (1955) · Zbl 0067.18802
[62] Martin, S. P., Phys. Rev. D, 96, Article 096005 pp. (2017)
[63] Martin, S. P.; Patel, H. H., Phys. Rev. D, 98, Article 076008 pp. (2018)
[64] Machacek, M. E.; Vaughn, M. T., Nucl. Phys. B, 249, 70 (1985)
[65] Machacek, M. E.; Vaughn, M. T., Nucl. Phys. B, 236, 221 (1984)
[66] Machacek, M. E.; Vaughn, M. T., Nucl. Phys. B, 222, 83 (1983)
[67] Shtabovenko, V.; Mertig, R.; Orellana, F., Comput. Phys. Commun., 207, 432 (2016) · Zbl 1375.68227
[68] Shtabovenko, V.; Mertig, R.; Orellana, F., Comput. Phys. Commun., 256, Article 107478 pp. (2020) · Zbl 1525.81004
[69] Ruijl, B.; Ueda, T.; Vermaseren, J., FORM version 4.2
[70] Dreiner, H. K.; Haber, H. E.; Martin, S. P., Phys. Rep., 494, 1 (2010)
[71] Braaten, E.; Nieto, A., Phys. Rev. D, 53, 3421 (1996)
[72] Chetyrkin, K. G.; Tkachov, F. V., Nucl. Phys. B, 192, 159 (1981)
[73] Tkachov, F. V., Phys. Lett. B, 100, 65 (1981)
[74] Nishimura, M.; Schröder, Y., J. High Energy Phys., 09, Article 051 pp. (2012)
[75] Fonseca, R. M., Comput. Phys. Commun., 267, Article 108085 pp. (2021) · Zbl 1523.81091
[76] Hirvonen, J.; Löfgren, J.; Ramsey-Musolf, M. J.; Schicho, P.; Tenkanen, T. V.I., J. High Energy Phys., 07, Article 135 pp. (2022) · Zbl 1522.81207
[77] Karjalainen, M.; Peisa, J., Z. Phys. C, 76, 319 (1997)
[78] Branco, G. C.; Ferreira, P. M.; Lavoura, L.; Rebelo, M. N.; Sher, M.; Silva, J. P., Phys. Rep., 516, 1 (2012)
[79] Gunion, J. F.; Haber, H. E.; Kane, G. L.; Dawson, S., The Higgs Hunter’s Guide, vol. 80 (2000)
[80] Georgi, H., Lie Algebras in Particle Physics, vol. 54 (1999), Perseus Books: Perseus Books Reading, MA
[81] Slansky, R., Phys. Rep., 79, 1 (1981)
[82] Losada, M., Phys. Rev. D, 56, 2893 (1997)
[83] Andersen, J. O., Eur. Phys. J. C, 11, 563 (1999)
[84] Gorda, T.; Helset, A.; Niemi, L.; Tenkanen, T. V.I.; Weir, D. J., J. High Energy Phys., 02, Article 081 pp. (2019)
[85] Linde, A. D., Nucl. Phys. B, 216, 421 (1983)
[86] Gould, O.; Hirvonen, J., Phys. Rev. D, 104, Article 096015 pp. (2021)
[87] Ekstedt, A., Eur. Phys. J. C, 82, 173 (2022)
[88] Ekstedt, A., J. High Energy Phys., 08, Article 115 pp. (2022) · Zbl 1522.81700
[89] Laine, M.; Rajantie, A., Nucl. Phys. B, 513, 471 (1998)
[90] Schicho, P.; Tenkanen, T. V.I.; White, G., J. High Energy Phys., 11, Article 047 pp. (2022) · Zbl 1536.81249
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.