×

Box graphs and resolutions I. (English) Zbl 1332.81127

Summary: Box graphs succinctly and comprehensively characterize singular fibers of elliptic fibrations in codimension two and three, as well as flop transitions connecting these, in terms of representation theoretic data. We develop a framework that provides a systematic map between a box graph and a crepant algebraic resolution of the singular elliptic fibration, thus allowing an explicit construction of the fibers from a singular Weierstrass or Tate model. The key tool is what we call a fiber face diagram, which shows the relevant information of a (partial) toric triangulation and allows the inclusion of more general algebraic blowups. We shown that each such diagram defines a sequence of weighted algebraic blowups, thus providing a realization of the fiber defined by the box graph in terms of an explicit resolution. We show this correspondence explicitly for the case of \(\operatorname{SU}(5)\) by providing a map between box graphs and fiber faces, and thereby a sequence of algebraic resolutions of the Tate model, which realizes each of the box graphs.
For Part II see [the authors, ibid. 905, 480–530 (2016; Zbl 1332.81128)].

MSC:

81T13 Yang-Mills and other gauge theories in quantum field theory
81T60 Supersymmetric field theories in quantum mechanics
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
14D06 Fibrations, degenerations in algebraic geometry
55R05 Fiber spaces in algebraic topology
55R15 Classification of fiber spaces or bundles in algebraic topology
17B81 Applications of Lie (super)algebras to physics, etc.

Citations:

Zbl 1332.81128

Software:

Mathematica; Smooth

References:

[1] Kodaira, K., On compact analytic surfaces, Ann. Math., 77 (1963) · Zbl 0171.19601
[2] Néron, A., Modèles minimaux des variétés abéliennes sur les corps locaux et globaux, Inst. Hautes Études Sci. Publ. Math. No., 21, 128 (1964) · Zbl 0132.41403
[3] Hayashi, H.; Lawrie, C.; Morrison, D. R.; Schafer-Nameki, S., Box graphs and singular fibers, J. High Energy Phys., 1405, Article 048 pp. (2014) · Zbl 1333.81369
[4] Hayashi, H.; Lawrie, C.; Schafer-Nameki, S., Phases, flops and F-theory: \(SU(5)\) gauge theories, J. High Energy Phys., 1310, Article 046 pp. (2013) · Zbl 1342.81289
[5] Intriligator, K. A.; Morrison, D. R.; Seiberg, N., Five-dimensional supersymmetric gauge theories and degenerations of Calabi-Yau spaces, Nucl. Phys. B, 497, 56-100 (1997) · Zbl 0934.81061
[6] Aharony, O.; Hanany, A.; Intriligator, K. A.; Seiberg, N.; Strassler, M., Aspects of \(N = 2\) supersymmetric gauge theories in three-dimensions, Nucl. Phys. B, 499, 67-99 (1997) · Zbl 0934.81063
[7] de Boer, J.; Hori, K.; Oz, Y., Dynamics of \(N = 2\) supersymmetric gauge theories in three-dimensions, Nucl. Phys. B, 500, 163-191 (1997) · Zbl 0934.81065
[8] Grimm, T. W., The \(N = 1\) effective action of F-theory compactifications, Nucl. Phys. B, 845, 48-92 (2011) · Zbl 1207.81120
[9] Grimm, T. W.; Hayashi, H., F-theory fluxes, chirality and Chern-Simons theories, J. High Energy Phys., 1203, Article 027 pp. (2012) · Zbl 1309.81218
[10] Bershadsky, M.; Intriligator, K. A.; Kachru, S.; Morrison, D. R.; Sadov, V., Geometric singularities and enhanced gauge symmetries, Nucl. Phys. B, 481, 215-252 (1996) · Zbl 1049.81581
[11] Krause, S.; Mayrhofer, C.; Weigand, T., \(G_4\) flux, chiral matter and singularity resolution in F-theory compactifications, Nucl. Phys. B, 858, 1-47 (2012) · Zbl 1246.81271
[12] Marsano, J.; Schafer-Nameki, S., Yukawas, G-flux, and spectral covers from resolved Calabi-Yau’s, J. High Energy Phys., 1111, Article 098 pp. (2011) · Zbl 1306.81258
[13] Esole, M.; Yau, S.-T., Small resolutions of \(SU(5)\)-models in F-theory · Zbl 1447.81171
[14] Lawrie, C.; Schafer-Nameki, S., The Tate form on steroids: resolution and higher codimension fibers, J. High Energy Phys., 1304, Article 061 pp. (2013) · Zbl 1342.81302
[15] Braun, A.; Schafer-Nameki, S., Box graphs and resolutions II, Nucl. Phys. B (2016) · Zbl 1332.81127
[16] Reid, M., Young person’s guide to canonical singularities, Proc. Symp. Pure Math., 46 (1987) · Zbl 0634.14003
[17] Candelas, P.; Font, A., Duality between the webs of heterotic and type II vacua, Nucl. Phys. B, 511, 295-325 (1998) · Zbl 0947.81054
[18] Perevalov, E.; Skarke, H., Enhanced gauged symmetry in type II and F theory compactifications: Dynkin diagrams from polyhedra, Nucl. Phys. B, 505, 679-700 (1997) · Zbl 0925.14021
[19] Esole, M.; Shao, S.-H.; Yau, S.-T., Singularities and gauge theory phases II · Zbl 1428.81124
[20] Esole, M.; Shao, S.-H.; Yau, S.-T., Singularities and gauge theory phases · Zbl 1428.81123
[21] Batyrev, V., Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Algebraic Geom., 493-535 (1994) · Zbl 0829.14023
[22] Borisov, L., Towards the mirror symmetry for Calabi-Yau complete intersections in Gorenstein toric Fano varieties
[23] Batyrev, V. V.; Borisov, L., On Calabi-Yau complete intersections in toric varieties · Zbl 0908.14015
[24] Katz, S.; Morrison, D. R.; Schafer-Nameki, S.; Sully, J., Tate’s algorithm and F-theory, J. High Energy Phys., 1108, Article 094 pp. (2011) · Zbl 1298.81307
[25] Collinucci, A.; Savelli, R., On flux quantization in F-theory · Zbl 1309.81210
[26] Danilov, V. I., The geometry of toric varieties, Russ. Math. Surv., 33, 2, 97 (1978) · Zbl 0425.14013
[27] Fulton, W., Introduction to Toric Varieties (1993), Princeton University Press: Princeton University Press Princeton · Zbl 0813.14039
[28] Cox, D.; Little, J.; Schenck, H., Toric Varieties, Graduate Studies in Mathematics (2011), American Mathematical Society · Zbl 1223.14001
[29] Kreuzer, M., Toric geometry and Calabi-Yau compactifications, Ukr. J. Phys., 55, 613-625 (2010)
[30] Bouchard, V., Lectures on complex geometry, Calabi-Yau manifolds and toric geometry
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.