×

Modeling random and non-random decision uncertainty in ratings data: a fuzzy beta model. (English) Zbl 1484.62099

Summary: Modeling human ratings data subject to raters’ decision uncertainty is an attractive problem in applied statistics. In view of the complex interplay between emotion and decision making in rating processes, final raters’ choices seldom reflect the true underlying raters’ responses. Rather, they are imprecisely observed in the sense that they are subject to a non-random component of uncertainty, namely the decision uncertainty. The purpose of this article is to illustrate a statistical approach to analyse ratings data which integrates both random and non-random components of the rating process. In particular, beta fuzzy numbers are used to model raters’ non-random decision uncertainty and a variable dispersion beta linear model is instead adopted to model the random counterpart of rating responses. The main idea is to quantify characteristics of latent and non-fuzzy rating responses by means of random observations subject to fuzziness. To do so, a fuzzy version of the Expectation-Maximization algorithm is adopted to both estimate model’s parameters and compute their standard errors. Finally, the characteristics of the proposed fuzzy beta model are investigated by means of a simulation study as well as two case studies from behavioral and social contexts.

MSC:

62J86 Fuzziness, and linear inference and regression
62J12 Generalized linear models (logistic models)
62P25 Applications of statistics to social sciences

References:

[1] Aiken, LR, Rating Scales and Checklists: Evaluating Behavior, Personality, and Attitudes (1996), New York: Wiley, New York
[2] Aldrich, JH; Nelson, FD, Linear Probability, Logit, and Probit Models, 45 (1984), Beverly Hills: Sage, Beverly Hills
[3] Algamal, ZY, A particle swarm optimization method for variable selection in beta regression model, Electron. J. Appl. Stat. Anal., 12, 2, 508-519 (2019)
[4] Alimi, AM, Beta neuro-fuzzy systems, TASK Q. J. Special Issue Neural Netw., 7, 1, 23-41 (2003)
[5] Almohaimmeed, BM, Restaurant quality and customer satisfaction, Int. Rev. Manag. Market., 7, 3, 42-49 (2017)
[6] Angel, S.; Disslbacher, F.; Humer, S.; Schnetzer, M., What did you really earn last year? Explaining measurement error in survey income data, J. R. Stat. Soc. Ser. A (Stat. Soc.), 182, 4, 1411-1437 (2019)
[7] Augustin, T., Coolen, F.P., De Cooman, G., Troffaes, M.C. (eds.) Introduction to Imprecise Probabilities. Wiley (2014) · Zbl 1290.62003
[8] Baklouti, N.; Abraham, A.; Alimi, AM, A beta basis function interval type-2 fuzzy neural network for time series applications, Eng. Appl. Artif. Intell., 71, 259-274 (2018)
[9] Berkachy, R., Donzé, L.: Fuzzy confidence interval estimation by likelihood ratio. In: 2019 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology (EUSFLAT 2019), Atlantis Press (2019)
[10] Bıçaksız, P.; Özkan, T., Impulsivity and driver behaviors, offences and accident involvement: a systematic review, Transp. Res. Part F Traffic Psychol. Behav., 38, 194-223 (2016)
[11] Brooks, ME; Kristensen, K.; van Benthem, KJ; Magnusson, A.; Berg, CW; Nielsen, A.; Skaug, HJ; Maechler, M.; Bolker, BM, glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling, R J., 9, 2, 378-400 (2017)
[12] Buckley, JJ, Fuzzy Probability and Statistics (2006), Berlin: Springer, Berlin · Zbl 1095.62002
[13] Calcagnì, A.; Lombardi, L., Dynamic fuzzy rating tracker (DYFRAT): a novel methodology for modeling real-time dynamic cognitive processes in rating scales, Appl. Soft Comput., 24, 948-961 (2014)
[14] Calcagnì, A.; Lombardi, L.; Pascali, E., Non-convex fuzzy data and fuzzy statistics: a first descriptive approach to data analysis, Soft Comput., 18, 8, 1575-1588 (2014) · Zbl 1395.62226
[15] Calcagnì, A., Cao, N., Rubaltelli, E., Lombardi, L.: A psychometric modeling approach to fuzzy rating data. arxiv:2102.04273 [stat.AP] (2021)
[16] Canterle, DR; Bayer, FM, Variable dispersion beta regressions with parametric link functions, Stat. Pap., 60, 5, 1541-1567 (2019) · Zbl 1432.62227
[17] Cattaneo, ME, The likelihood interpretation as the foundation of fuzzy set theory, Int. J. Approx. Reason., 90, 333-340 (2017) · Zbl 1419.68157
[18] Chukhrova, N.; Johannssen, A., Randomized versus non-randomized hypergeometric hypothesis testing with crisp and fuzzy hypotheses, Stat. Pap., 61, 2605-2641 (2018) · Zbl 1467.62071
[19] Chwastyk, A.; Kosiński, W., Fuzzy calculus with applications, Math. Appl., 41, 1 (2013) · Zbl 1297.94135
[20] Coletti, G.; Scozzafava, R., Conditional probability, fuzzy sets, and possibility: a unifying view, Fuzzy Sets Syst., 144, 1, 227-249 (2004) · Zbl 1076.68082
[21] Couso, I.; Dubois, D., Statistical reasoning with set-valued information: ontic vs. epistemic views, Int. J. Approx. Reason., 55, 7, 1502-1518 (2014) · Zbl 1407.62032
[22] Couso, I., Dubois, D., Sánchez, L.: Random sets and random fuzzy sets as ill-perceived random variables. In: Springer-Briefs in Computational Intelligence. Springer, Berlin (2014) · Zbl 1355.60005
[23] de Sáa S.R., Gil M.Á., González-Rodríguez, G., López, M.T., Lubiano, M.A.: Fuzzy rating scale-based questionnaires and their statistical analysis. IEEE Trans. Fuzzy Syst. 23(1), 111-126 (2014)
[24] De Bruin, WB; Manski, CF; Topa, G.; Van Der Klaauw, W., Measuring consumer uncertainty about future inflation, J. Appl. Econ., 26, 3, 454-478 (2011)
[25] Deffenbacher, JL; Oetting, ER; Lynch, RS, Development of a driving anger scale, Psychol. Rep., 74, 1, 83-91 (1994)
[26] Denœux, T., Maximum likelihood estimation from fuzzy data using the EM algorithm, Fuzzy Sets Syst., 183, 1, 72-91 (2011) · Zbl 1239.62017
[27] Denoeux, T., Likelihood-based belief function: justification and some extensions to low-quality data, Int. J. Approx. Reason., 55, 7, 1535-1547 (2014) · Zbl 1407.62097
[28] Dombi, J., Jónás, T.: Flexible fuzzy numbers for likert scale-based evaluations. In: International Workshop Soft Computing Applications, pp. 81-101. Springer, Berlin (2018)
[29] Dubois, D.; Prade, H., Operations on fuzzy numbers, Int. J. Syst. Sci., 9, 6, 613-626 (1978) · Zbl 0383.94045
[30] Eid, M., Zickar, M.J.: Detecting response styles and faking in personality and organizational assessments by mixed Rasch models. In: Multivariate and Mixture Distribution Rasch Models, pp. 255-270. Springer, Berlin (2007)
[31] Feng, Z.; Zhang, J.; Chen, Q., Statistical inference for linear regression models with additive distortion measurement errors, J. Appl. Stat., 61, 2483-2509 (2018) · Zbl 1461.62122
[32] Ferrari, S.; Cribari-Neto, F., Beta regression for modelling rates and proportions, J. Appl. Stat., 31, 7, 799-815 (2004) · Zbl 1121.62367
[33] Freeman, JB; Ambady, N., Mousetracker: software for studying real-time mental processing using a computer mouse-tracking method, Behav. Res. Methods, 42, 1, 226-241 (2010)
[34] Furnham, A., Response bias, social desirability and dissimulation, Pers. Individ. Differ., 7, 3, 385-400 (1986)
[35] Gebhardt, J., Gil, M.A., Kruse, R.: Fuzzy set-theoretic methods in statistics. In: Fuzzy Sets in Decision Analysis, Operations Research and Statistics, pp. 311-347. Springer, Berlin (1998) · Zbl 0946.62006
[36] Gil, MA; López-Díaz, M.; Ralescu, DA, Overview on the development of fuzzy random variables, Fuzzy Sets Syst., 157, 19, 2546-2557 (2006) · Zbl 1108.60006
[37] Golia, S., On the interpretation of the uncertainty parameter in CUB models, Electron. J. Appl. Stat. Anal., 8, 3, 312-328 (2015)
[38] González-Rodríguez, G.; Colubi, A.; Gil, MÁ, A fuzzy representation of random variables: an operational tool in exploratory analysis and hypothesis testing, Comput. Stat. Data Anal., 51, 1, 163-176 (2006) · Zbl 1157.62303
[39] Guillaume, R.; Dubois, D., A min-max regret approach to maximum likelihood inference under incomplete data, Int. J. Approx. Reason., 121, 135-149 (2020) · Zbl 1445.68217
[40] Ha, J.; Jang, SS, Effects of service quality and food quality: the moderating role of atmospherics in an ethnic restaurant segment, Int. J. Hospt. Manag., 29, 3, 520-529 (2010)
[41] Hanss, M., Applied Fuzzy Arithmetic (2005), Berlin: Springer, Berlin · Zbl 1085.03041
[42] Hesamian, G.; Shams, M., A note on fuzzy probability of a fuzzy event, Int. J. Intell. Syst., 32, 7, 676-685 (2017)
[43] Hesketh, T.; Pryor, R.; Hesketh, B., An application of a computerized fuzzy graphic rating scale to the psychological measurement of individual differences, Int. J. Man-Mach. Stud., 29, 1, 21-35 (1988) · Zbl 0653.92021
[44] Iannario, M., Modelling scale effects and uncertainty in rating surveys, Electron. J. Appl. Stat. Anal., 8, 3, 329-345 (2015)
[45] Kahneman, D.; Tversky, A., Variants of uncertainty, Cognition, 11, 2, 143-157 (1982)
[46] Kanjanatarakul, O.; Denoeux, T.; Sriboonchitta, S., Prediction of future observations using belief functions: a likelihood-based approach, Int. J. Approx. Reason., 72, 71-94 (2016) · Zbl 1352.68247
[47] Kruse, R.; Meyer, KD, Statistics with Vague Data (1987), Berlin: Springer, Berlin · Zbl 0663.62010
[48] Lin, TY; Cercone, N., Rough Sets and Data Mining: Analysis of Imprecise Data (2012), Berlin: Springer, Berlin
[49] Liu, B.: Uncertainty theory. In: Uncertainty Theory, pp. 1-79. Springer, Berlin (2010)
[50] Lombardi, L.; Pastore, M.; Nucci, M.; Bobbio, A., SGR modeling of correlational effects in fake good self-report measures, Methodol. Comput. Appl. Probab., 17, 4, 1037-1055 (2015) · Zbl 1359.62505
[51] Lubiano, M.A., de Sáa SR, Montenegro M, Sinova B, Gil MÁ: Descriptive analysis of responses to items in questionnaires. Why not using a fuzzy rating scale? Inf. Sci. 360, 131-148 (2016)
[52] McCulloch, CE, Generalized linear models, J. Am. Stat. Assoc., 95, 452, 1320-1324 (2000) · Zbl 1072.62613
[53] McFadden, D.; Zarembka, P., Conditional logit analysis of qualitative choice be, Conditional logit analysis of qualitative choice be, 105-142 (1973), New York: Academic Press, New York
[54] McLachlan, GJ; Peel, D., Finite Mixture Models (2004), New York: Wiley, New York · Zbl 0963.62061
[55] McNally, B.; Bradley, GL, Re-conceptualising the reckless driving behaviour of young drivers, Accid. Anal. Prev., 70, 245-257 (2014)
[56] Meilijson, I., A fast improvement to the EM algorithm on its own terms, J. R. Stat. Soc. Ser. B (Methodol.), 51, 1, 127-138 (1989) · Zbl 0674.65118
[57] Migliorati, S.; Di Brisco, AM; Ongaro, A., A new regression model for bounded responses, Bayesian Anal., 13, 3, 845-872 (2018) · Zbl 1407.62279
[58] Miller, DC; Salkind, NJ, Handbook of Research Design and Social Measurement (2002), Beverly Hills: Sage, Beverly Hills
[59] Muthukumarana, S.; Swartz, TB, Bayesian analysis of ordinal survey data using the Dirichlet process to account for respondent personality traits, Commun. Stat.-Simul. Comput., 43, 1, 82-98 (2014) · Zbl 1333.62087
[60] Najafi, Z.; Taheri, SM; Mashinchi, M., Likelihood ratio test based on fuzzy data, Int. J. Intell. Technol. Appl. Stat., 3, 3, 285-301 (2010)
[61] Namkung, Y.; Jang, SS, Are highly satisfied restaurant customers really different? A quality perception perspective, Int. J. Contemp. Hosp. Manag., 20, 2, 142-155 (2008)
[62] Nasibov, EN; Peker, S., On the nearest parametric approximation of a fuzzy number, Fuzzy Sets Syst., 159, 11, 1365-1375 (2008) · Zbl 1176.03038
[63] Ospina, R.; Ferrari, SL, A general class of zero-or-one inflated beta regression models, Comput. Stat. Data Anal., 56, 6, 1609-1623 (2012) · Zbl 1243.62099
[64] Pendrill, L.; Petersson, N., Metrology of human-based and other qualitative measurements, Meas. Sci. Technol., 27, 9, 094,003 (2016)
[65] Pendrill, LR, Using measurement uncertainty in decision-making and conformity assessment, Metrologia, 51, 4, S206 (2014)
[66] Piccolo, D.; Simone, R., The class of CUB models: statistical foundations, inferential issues and empirical evidence, Stat. Methods Appl., 28, 3, 389-435 (2019) · Zbl 1435.62242
[67] Piccolo, D.; Simone, R.; Iannario, M., Cumulative and CUB models for rating data: a comparative analysis, Int. Stat. Rev., 87, 2, 207-236 (2019) · Zbl 07763644
[68] Preston, CC; Colman, AM, Optimal number of response categories in rating scales: reliability, validity, discriminating power, and respondent preferences, Acta Psychol., 104, 1, 1-15 (2000)
[69] Quost, B.; Denoeux, T., Clustering and classification of fuzzy data using the fuzzy EM algorithm, Fuzzy Sets Syst., 286, 134-156 (2016) · Zbl 06840610
[70] Rabinowitz, J.; Schooler, NR; Brown, B.; Dalsgaard, M.; Engelhardt, N.; Friedberger, G.; Kinon, BJ; Lee, D.; Ockun, F.; Mahableshwarkar, A., Consistency checks to improve measurement with the Montgomery-Asberg depression rating scale (MADRS), J. Affect. Disord., 256, 143-147 (2019)
[71] Ranjbar, V., Hesamian, G.: Copula function for fuzzy random variables: applications in measuring association between two fuzzy random variables. In: Statistical Papers, pp. 1-20 (2017) · Zbl 1437.62183
[72] Saal, FE; Downey, RG; Lahey, MA, Rating the ratings: assessing the psychometrics quality of rating data, Psychol. Bull., 88, 2, 413-428 (1980)
[73] Schulte-Mecklenbeck, M., Kühberger, A., Johnson, J.G.: A Handbook of Process Tracing Methods for Decision Research: A Critical Review and User’s Guide. Psychology Press (2011)
[74] Scott-Parker, B.; King, MJ; Watson, B., The psychosocial purpose of driving and its relationship with the risky driving behaviour of young novice drivers, Transp. Res. Part F Traffic Psychol. Behav., 33, 16-26 (2015)
[75] Singpurwalla, ND; Booker, JM, Membership functions and probability measures of fuzzy sets, J. Am. Stat. Assoc., 99, 467, 867-877 (2004) · Zbl 1117.62425
[76] Slovic, P.; Finucane, ML; Peters, E.; MacGregor, DG, Risk as analysis and risk as feelings: some thoughts about affect, reason, risk, and rationality, Risk Anal. Int. J., 24, 2, 311-322 (2004)
[77] Stein, WE, Fuzzy probability vectors, Fuzzy Sets Syst., 15, 3, 263-267 (1985) · Zbl 0554.60005
[78] Su, Z.; Zheng, S.; Wang, P., Likelihood-based multivariate fuzzy model with linear inequality constraints, J. Intell. Fuzzy Syst., 27, 5, 2191-2209 (2014) · Zbl 1341.62224
[79] Su, ZG; Wang, PH; Li, YG; Zhou, ZK, Parameter estimation from interval-valued data using the expectation-maximization algorithm, J. Stat. Comput. Simul., 85, 2, 320-338 (2015) · Zbl 1457.62232
[80] Taubman-Ben-Ari, O., Attitudes toward accompanied driving: the views of teens and their parents, Transp. Res. Part F Traffic Psychol. Behav., 13, 4, 269-276 (2010)
[81] Taubman-Ben-Ari, O., How are meaning in life and family aspects associated with teen driving behaviors?, Transp. Res. Part F Traffic Psychol. Behav., 24, 92-102 (2014)
[82] Taubman-Ben-Ari, O.; Katz-Ben-Ami, L., Family climate for road safety: a new concept and measure, Accid. Anal. Prev., 54, 1-14 (2013)
[83] Toroyan, T.: Global Status Report on Road Safety. World Health Organization, Department of Violence and Injury Prevention and Disability, Supporting a decade of action Geneva (2015)
[84] Ülkümen, G.; Fox, CR; Malle, BF, Two dimensions of subjective uncertainty: clues from natural language, J. Exp. Psychol. Gen., 145, 10, 1280 (2016)
[85] Veall, MR; Zimmermann, KF, Evaluating pseudo-r 2’s for binary probit models, Qual. Quant., 28, 2, 151-164 (1994)
[86] Vonglao, P., Application of fuzzy logic to improve the likert scale to measure latent variables, Kasetsart J. Soc. Sci., 38, 3, 337-344 (2017)
[87] Vose, D., Risk Analysis: A Quantitative Guide (2008), New York: Wiley, New York · Zbl 0908.90061
[88] Yu, SC; Wu, B., Fuzzy item response model: a new approach to generate membership function to score psychological measurement, Qual. Quant., 43, 3, 381 (2009)
[89] Zadeh, LA, Probability measures of fuzzy events, J. Math. Anal. Appl., 23, 2, 421-427 (1968) · Zbl 0174.49002
[90] Zafar, B., Can subjective expectations data be used in choice models? Evidence on cognitive biases, J. Appl. Econ., 26, 3, 520-544 (2011)
[91] Zeileis, A.; Cribari-Neto, F.; Grün, B.; Kos-midis, I., Beta regression in R, J. Stat. Softw., 34, 2, 1-24 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.