×

Time series seasonal analysis based on fuzzy transforms. (English) Zbl 1428.62034

Summary: We define a new seasonal forecasting method based on fuzzy transforms. We use the best interpolating polynomial for extracting the trend of the time series and generate the inverse fuzzy transform on each seasonal subset of the universe of discourse for predicting the value of an assigned output. In the first example, we use the daily weather dataset of the municipality of Naples (Italy) starting from data collected from 2003 to 2015 making predictions on mean temperature, max temperature and min temperature, all considered daily. In the second example, we use the daily mean temperature measured at the weather station “Chiavari Caperana” in the Liguria Italian Region. We compare the results with our method, the average seasonal variation, Auto Regressive Integrated Moving Average (ARIMA) and the usual fuzzy transforms concluding that the best results are obtained under our approach in both examples. In addition, the comparison results show that, for seasonal time series that have no consistent irregular variations, the performance obtained with our method is comparable with the ones obtained using Support Vector Machine- and Artificial Neural Networks-based models.

MSC:

62A86 Fuzzy analysis in statistics
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62M20 Inference from stochastic processes and prediction

References:

[1] Abraham, B.; Ledolter, J.; ; Statistical Methods for Forecasting: New York, NY, USA 1983; ,445. · Zbl 0587.62175
[2] ; Principles of Forecasting: A Handbook for Researchers and Practitioners: Berlin, Germany 2001; ,841.
[3] Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C.; ; Time Series Analysis: Forecasting and Control: Englewood Cliffs, NJ, USA 2015; ,712. · Zbl 1154.62062
[4] Chatfield, C.; ; Time Series Forecasting: Boca Raton, FL, USA 2001; ,267.
[5] Hymdam, R.J.; Athanasopoulos, G.; ; Forecasting Principles and Practice: Melbourne, Australia 2013; ,291.
[6] Lu, W.Z.; Wang, W.J.; Potential assessment of the Support Vector Machine method in forecasting ambient air pollutant trends; Chemosphere: 2005; Volume 59 ,693-701.
[7] Makridakis, S.G.; Wheelwright, S.C.; Hyndman, R.J.; ; Forecasting: Methods and Applications: New York, NY, USA 1998; ,656.
[8] Zhang, G.P.; Qi, M.; Neural network forecasting for seasonal and trend time series; Eur. J. Oper. Res.: 2005; Volume 160 ,501-514. · Zbl 1066.62094
[9] Pankratz, A.; ; Forecasting with Dynamic Regression Models: Hoboken, NJ, USA 2012; ,392.
[10] Miller, K.; Smola, A.J.; Ratsch, G.; Scholkopf, B.; Kohlmorgen, J.; Vapnik, V.; Predicting time series with support vector machines; Proceedings of the 7th International Conference on Artificial Neural Networks, Lecture Notes in Computer Sciences: Berlin, Germany 1998; Volume Volume 1327 ,999-1004.
[11] Pai, P.F.; Lin, K.P.; Lin, C.S.; Chang, P.T.; Time series forecasting by a seasonal support vector regression model; Exp. Syst. Appl.: 2010; Volume 37 ,4261-4265.
[12] Mohandes, M.A.; Halawani, T.O.; Rehman, S.; Hussain, A.A.; Support vector machines for wind speed prediction; Renew. Energy: 2004; Volume 29 ,939-947.
[13] Ittig, P.T.; A seasonal index for business; Decis. Sci.: 1997; Volume 28 ,335-355.
[14] Hong, W.C.; Pai, P.F.; Potential assessment of the support vector regression technique in rainfall forecasting; Water Resour. Manag.: 2007; Volume 21 ,495-513.
[15] Crone, S.F.; Hibon, M.; Nikolopoulos, K.; Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction; Int. J. Forecast.: 2011; Volume 27 ,635-660.
[16] Hamzacebi, C.; Improving artificial neural networks performance in seasonal time series forecasting; Inf. Sci.: 2008; Volume 178 ,4550-4559.
[17] Zhang, G.P.; Kline, D.M.; Quarterly time-series forecasting with neural networks; IEEE Trans. Neural Netw.: 2007; Volume 18 ,1800-1814.
[18] Zhang, G.; Patuwo, B.E.; Hu, M.Y.; Forecasting with artificial neural networks: The state of the art; Int. J. Forecast.: 1998; Volume 14 ,35-62.
[19] Zhang, G.; Zhang, G.P.; Time series forecasting using a hybrid ARIMA and neural network model; Neurocomputing: 2003; Volume 50 ,159-175. · Zbl 1006.68828
[20] Faraway, J.; Chatfield, C.; Time series forecasting with neural networks: A comparative study using the airline data; J. R. Stat. Soc. Ser. C Appl. Stat.: 1998; Volume 47 ,231-250.
[21] Kihoro, J.M.; Otieno, R.O.; Wafula, C.; Seasonal time series forecasting: A comparative study of ARIMA and ANN models; Afr. J. Sci. Technol.: 2004; Volume 5 ,41-49.
[22] Khandelwal, I.; Adhikari, R.; Verma, G.; Time series forecasting using hybrid ARIMA and ANN models based on DWT decomposition; Procedia Comput. Sci.: 2015; Volume 48 ,173-179.
[23] Štepnicka, M.; Cortez, P.; Peralta Donate, J.; Štepnickova, L.; Forecasting seasonal time series with computational intelligence: On recent methods and the potential of their combinations; Exp. Syst. Appl.: 2013; Volume 40 ,1981-1992.
[24] Kumar, A.; Kumar, D.; Jarial, S.K.; A hybrid clustering method based on improved artificial bee colony and fuzzy C-Means algorithm; Int. J. Artif. Intell.: 2017; Volume 15 ,40-60.
[25] Medina, J.; Ojeda-Aciego, M.; Multi-adjoint t-concept lattices; Inf. Sci.: 2010; Volume 180 ,712-725. · Zbl 1187.68587
[26] Nowaková, J.; Prílepok, M.; Snášel, V.; Medical image retrieval using vector quantization and fuzzy S-tree; J. Med. Syst.: 2017; Volume 41 ,1-16.
[27] Pozna, C.; Minculete, N.; Precup, R.; Kòczy, L.T.; Ballagi, A.; Signatures: Definitions, operators and applications to fuzzy modeling; Fuzzy Sets Syst.: 2012; Volume 201 ,86-104. · Zbl 1251.93022
[28] Perfilieva, I.; Fuzzy transforms: Theory and applications; Fuzzy Sets Syst.: 2006; Volume 157 ,993-1023. · Zbl 1092.41022
[29] Di Martino, F.; Loia, V.; Sessa, S.; Fuzzy transforms method in prediction data analysis; Fuzzy Sets Syst.: 2011; Volume 180 ,146-163. · Zbl 1318.62284
[30] Wang, L.X.; Mendel, J.M.; Generating fuzzy rules by learning from examples; IEEE Trans. Syst. Man Cybern.: 1992; Volume 22 ,1414-1427.
[31] Di Martino, F.; Loia, V.; Perfilieva, I.; Sessa, S.; An image coding/decoding method based on direct and inverse fuzzy transforms; Int. J. Approx. Reason.: 2008; Volume 48 ,110-131. · Zbl 1184.68582
[32] Di Martino, F.; Loia, V.; Sessa, S.; Fuzzy transforms method and attribute dependency in data analysis; Inf. Sci.: 2010; Volume 180 ,493-505. · Zbl 1182.62153
[33] Novák, V.; Pavliska, V.; Perfilieva, I.; Štepnicka, M.; F-transform and fuzzy natural logic in Time Series Analysis; Proceedings of the 8th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT): Pleasantville, NJ, USA ; ,40-47.
[34] Kolassa, W.; Schutz, W.; Advantages of the MADMEAN ratio over the MAPE; Foresight: 2007; Volume 6 ,40-43.
[35] Goodrich, R.L.; The Forecast Pro methodology; Int. J. Forecast.: 2000; Volume 16 ,533-535.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.